High Energy Density Welding of Ni-Based Superalloys: An Overview
Abstract
:1. Introduction
2. High Energy Density Welding Techniques
3. Weldability of Ni-Based Superalloys
4. Laser Beam Welding (LBW)
5. Electron Beam Welding (EBW)
6. Typical Ni-Based Superalloys in Detail
6.1. Inconel 625
6.2. Inconel 718 and AF955
6.3. Nimonic 263
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thellaputta, G.R.; Chandra, P.S.; Rao, C.S.P. Machinability of Nickel Based Superalloys: A Review. Mater. Today Proc. 2017, 4, 3712–3721. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Xia, X.; Liang, H.; Qi, Q.; Liu, Y. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ’-strengthened superalloys. J. Mater. Sci. Technol. 2021, 67, 95–104. [Google Scholar] [CrossRef]
- Selvaraj, S.K.; Sundaramali, G.; Dev, S.J.; Swathish, R.S.; Karthikeyan, R.; Vishaal, K.E.V.; Paramasivam, V. Recent Advancements in the Field of Ni-Based Superalloys. Adv. Mater. Sci. Eng. 2021, 2021, 9723450. [Google Scholar] [CrossRef]
- Su, R.; Hao, D.; He, P.; Wu, D.; Wang, Q.; Dong, H.; Ma, H. Effect of Co on creep and stress rupture properties of nickel-based superalloys—A review. J. Alloys Compd. 2023, 967, 171744. [Google Scholar] [CrossRef]
- Reed, R.C. The Superalloys, Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Cottrell, A.H.; Bilby, B.A. Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. Sect. A 1949, 62, 49–62. [Google Scholar] [CrossRef]
- Goodfellow, A.J. Strengthening mechanisms in polycrystalline nickel-based superalloys. Mater. Sci. Technol. 2018, 34, 1793–1808. [Google Scholar] [CrossRef]
- Calvo, J.; Penalva, M.; Cabrera, J.M. Characterization of Strain-Induced Precipitation in Inconel 718 Superalloy. J. Mater. Eng. Perform. 2016, 25, 3409–3417. [Google Scholar] [CrossRef]
- Sohrabi, M.J.; Mirzadeh, H. Unexpected formation of delta (δ) phase in as-cast niobium-bearing superalloy at solution annealing temperatures. Mater. Lett. 2020, 261, 127008. [Google Scholar] [CrossRef]
- Cao, G.; Sun, T.; Wang, C.; Li, X.; Liu, M.; Zhang, Z.; Hu, P.; Russell, A.; Schneider, R.; Gerthsen, D.; et al. Investigations of γ′ γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting. Mater. Charact. 2018, 136, 398–406. [Google Scholar] [CrossRef]
- Rafiei, M.; Mirzadeh, H.; Malekan, M. Micro-mechanisms and precipitation kinetics of delta (δ)phase in Inconel 718 superalloy during aging. J. Alloys Compd. 2019, 795, 207–212. [Google Scholar] [CrossRef]
- Maldini, M.; Angella, G.; Lupinc, V. Analysis of creep curves of a nickel base superalloy in a wide stress/temperature range. Mater. Sci. Eng. A 2007, 462, 436–440. [Google Scholar] [CrossRef]
- Pollock, T.M.; Tin, S. Nickel-Based Superalloys for Advanced Turbine Engines Chemistry, Microstructure, and Properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Maldini, M.; Angella, G.; Lupinc, V. Meccanismi di addolcimento ed incrudimento dovuti allo sviluppo di raft in una superlega monocristallina a base di nichel. Metall. Ital. 2011, 103, 33–40. [Google Scholar]
- Kaciulis, S.; Mezzi, A.; Amati, M.; Montanari, R.; Angella, G.; Maldini, M. Relation between the microstructure and microchemistry in Ni-based superalloy. Surf. Interface Anal. 2012, 44, 982–985. [Google Scholar] [CrossRef]
- Huron, E.S.; Reed, R.C.; Hardy, M.C.; Mills, M.J.; Montero, R.E.; Portella, P.D.; Telesman, J. (Eds.) Superalloys 2012; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Brown, E.E.; Muzyka, D.R. The Superalloys II; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Angella, G.; Donnini, R.; Ripamonti, D.; Maldini, M. The role of particle ripening on the creep acceleration of Nimonic 263 superalloy. MATEC Web Conf. 2014, 14, 14001. [Google Scholar] [CrossRef]
- Andersson, J. Review of Weldability of precipitation hardening Ni- and Fe-Ni- based superalloys. In Proceedings of the 9th International Symposium Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, PittsBurgh, PA, USA, 3–6 June 2018; pp. 899–916. [Google Scholar]
- Prager, M.; Shira, C.S. Welding of Precipitation Hardening Nickel-Base Alloys. Weld. Res. Counc. Bull. 1968, 6, 128–155. [Google Scholar]
- Franklin, J.E.; Savage, W.F. Stress relaxation and strain-age cracking in Rene 41 weldments. J. Weld. Join. 1974, 53, 380–387. [Google Scholar]
- Andersson, J. Weldability of Ni-based Superalloys. In Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives, PittsBurgh, PA, USA, 28 September–1 October 2014; p. 249. [Google Scholar]
- Vincent, R. Precipitation Around Welds in the Nickel-Base Superalloy, Inconel 718; Elsevier: Amsterdam, The Netherlands, 1985; Volume 33. [Google Scholar]
- Banovic, S.; DuPont, J.; Marder, A. Dilution and microsegregation in dissimilar metal welds between super austenitic stainless steel and nickel base alloys. Sci. Technol. Weld. Join. 2002, 7, 374–383. [Google Scholar] [CrossRef]
- Lippold, J.C.; Kiser, S.D.; DuPont, J.N. Welding Metallurgy and Weldability of Nickel-Base Alloys; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Wang, H.-S.; Huang, C.-Y.; Ho, K.-S.; Deng, S.-J. Microstructure evolution of laser repair welded René 77 nickel-based superalloy cast. Mater. Trans. 2011, 52, 2197–2204. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Xu, L.; Xu, J.; Ren, X.; Chen, X. Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy. Mater. Des. 2019, 183, 108105. [Google Scholar] [CrossRef]
- Egbewande, A.T.; Buckson, R.A.; Ojo, O.A. Analysis of laser beam weldability of Inconel 738 superalloy. Mater. Charact. 2010, 61, 569–574. [Google Scholar] [CrossRef]
- Ojo, O.A.; Richards, N.L.; Chaturvedi, M.C. Microstructural study of weld fusion zone of TIG welded IN 738LC nickel-based superalloy. Scr. Mater. 2004, 51, 683–688. [Google Scholar] [CrossRef]
- Ojo, O.A.; Richards, N.L.; Chaturvedi, M.C. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scr. Mater. 2004, 50, 641–646. [Google Scholar] [CrossRef]
- Montazeri, M.; Ghaini, F.M. The liquation cracking behavior of IN738LC superalloy during low power Nd:YAG pulsed laser welding. Mater. Charact. 2012, 67, 65–73. [Google Scholar] [CrossRef]
- Kim, K.M.; Lee, U.; Lee, H.; Seo, S.M.; Chun, F.J. Quantifying Susceptibility to Solidification Cracking in Oscillated CM247LC Superalloy Welds via Varestraint Testing. Met. Mater. Int. 2023, 29, 777–794. [Google Scholar] [CrossRef]
- Sekhar, N.C.; Reed, R.C. Power beam welding of thick section nickel base superalloys. Sci. Technol. Weld. Join. 2002, 7, 77–87. [Google Scholar] [CrossRef]
- Haußmann, L.; Burbaum, B.; Stöhr, B.; Förner, A.; Freund, L.; Göken, M.; Neumeier, S. Crack-Free Welding of a Co-Base Superalloy with High γ’ Precipitate Fraction. Adv. Eng. Mater. 2022, 24, 2200609. [Google Scholar] [CrossRef]
- AL-Nafeay, R.H.; AL-Roubaiy, A.O.; Omidvar, H. Overview of Joining and Repairing Techniques of Ni-Based Superalloy for Industrial Gas Turbine Applications. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1094, 012141. [Google Scholar] [CrossRef]
- Henderson, M.B.; Arrell, D.; Larsson, R.; Heobel, M.; Marchant, G. Nickel based superalloy welding practices for industrial gas turbine applications. Sci. Technol. Weld. Join. 2004, 9, 13–21. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.K.; Guan, Z.W.; Liu, Y.J.; Qi, D.K.; Wang, Q.Y. Electron beam welding of Nimonic 80A: Integrity and microstructure evaluation. Vacuum 2018, 151, 266–274. [Google Scholar] [CrossRef]
- Vemanaboina, H.; Gundabattini, E.; Akella, S.; Rao, A.C.U.M.; Buddu, R.K.; Ferro, P.; Berto, F. Mechanical and metallurgical properties of co2 laser beam inconel 625 welded joints. Appl. Sci. 2021, 11, 7002. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.; Yang, D.; Li, H.; Peng, Y.; Wang, K. Multi-scale simulation of grain growth during laser beam welding of nickel-based superalloy. J. Mater. Res. Technol. 2020, 9, 15034–15044. [Google Scholar] [CrossRef]
- She, L.; Wei, Y.; Wang, S.; Ma, J.; Ou, W. Welding parameter optimization of electron beam welded GH4169 superalloy based on orthogonal experiment and numerical simulation. Mater. Res. Express 2019, 6, 026567. [Google Scholar] [CrossRef]
- Thejasree, P.; Manikandan, N.; Binoj, J.S.; Varaprasad, K.C.; Palanisamy, D.; Raju, R. Numerical simulation and experimental investigation on laser beam welding of Inconel 625. Mater. Today Proc. 2020, 39, 268–273. [Google Scholar] [CrossRef]
- Tlili, I.; Baleanu, D.; Mohammad Sajadi, S.; Ghaemi, F.; Fagiry, M.A. Numerical and experimental analysis of temperature distribution and melt flow in fiber laser welding of Inconel 625. Int. J. Adv. Manuf. Technol. 2022, 121, 765–784. [Google Scholar] [CrossRef]
- Hernando, I.; Arrizubieta, J.I.; Lamikiz, A.; Ukar, E. Numerical model for predicting bead geometry and microstructure in laser beam welding of inconel 718 sheets. Metals 2018, 8, 536. [Google Scholar] [CrossRef]
- Dong, S.; Zhou, M.; Gao, K.; Shen, X. Polycrystal modeling and micromechanical simulation of nickel-based superalloy electron beam welded joint. Mater. Sci. Eng. A 2023, 883, 145507. [Google Scholar] [CrossRef]
- Yue, N.; Pei, L.; Xu, P.; Jiang, Z.; Lin, T.; Zhou, L.; Liang, Y. Porosity suppression of nickel-based superalloy by modulated base temperature in laser welding and mechanism analysis. J. Mater. Res. Technol. 2024, 30, 4725–4738. [Google Scholar] [CrossRef]
- Sun, Z.; Ion, J.C. Laser welding of dissimilar metal combinations. J. Mater. Sci. 1995, 30, 4205–4214. [Google Scholar] [CrossRef]
- Patterson, T.; Hochanadel, J.; Sutton, S.; Panton, B.; Lippold, J. A review of high energy density beam processes for welding and additive manufacturing applications. Weld. World 2021, 65, 1235–1306. [Google Scholar] [CrossRef]
- Wȩglowski, M.S.; Błacha, S.; Phillips, A. Electron beam welding—Techniques and trends—Review. Vacuum 2016, 130, 72–92. [Google Scholar] [CrossRef]
- Zhan, X.; Yu, H.; Feng, X.; Pan, P.; Liu, Z. A comparative study on laser beam and electron beam welding of 5A06 aluminum alloy. Mater. Res. Express 2019, 6, 056563. [Google Scholar] [CrossRef]
- Aqeel, M.; Gautam, J.P.; Shariff, S.M. Comparative study on autogenous diode laser, CO2 laser-MIG hybrid and multi-pass TIG welding of 10-mm thick Inconel 617 superalloy. Mater. Sci. Eng. A 2022, 856, 143967. [Google Scholar] [CrossRef]
- Sun, Z.; Kuo, M. Bridging the joint gap with wire feed laser welding. J. Mater. Process. Technol. 1999, 87, 213–222. [Google Scholar] [CrossRef]
- Sun, Z.; Karppi, R. The application of electron beam welding for the joining of dissimilar metals: An overview. J. Mater. Process. Technol. 1996, 59, 257–267. [Google Scholar] [CrossRef]
- Choudhury, B.; Singh, V.; Selvarajan, L.; Goel, S.; Chandrasekaran, M. Synergic investigation of microstructure, precipitation, and micro-segregation on Inconel 825 weldments: A comparative study between GTAW and EBW. Mater. Chem. Phys. 2024, 318, 129249. [Google Scholar] [CrossRef]
- Angella, G.; Barbieri, G.; Donnini, R.; Montanari, R.; Richetta, M.; Varone, A. Electron beam welding of IN792 DS: Effects of pass speed and PWHT on microstructure and hardness. Materials 2017, 10, 1033. [Google Scholar] [CrossRef]
- David, S.A.; Siefert, J.A.; Dupont, J.N.; Shingledecker, J.P. Weldability and weld performance of candidate nickel base superalloys for advanced ultrasupercritical fossil power plants part I: Fundamentals. Sci. Technol. Weld. Join. 2015, 20, 532–552. [Google Scholar] [CrossRef]
- Schnell, A.; Hoebel, M.; Samuleson, J. A study of the weldability of gamma prime hardened superalloys. Adv. Mater. Res. 2011, 278, 434–439. [Google Scholar] [CrossRef]
- Alvarez, P.; Vázquez, L.; Ruiz, N.; Rodríguez, P.; Magaña, A.; Niklas, A.; Santos, F. Comparison of hot cracking susceptibility of tig and laser beam welded alloy 718 by varestraint testing. Metals 2019, 9, 985. [Google Scholar] [CrossRef]
- Norouzian, M.; Amne Elahi, M.; Plapper, P. A review: Suppression of the solidification cracks in the laser welding process by controlling the grain structure and chemical compositions. J. Adv. Join. Process 2023, 7, 100139. [Google Scholar] [CrossRef]
- Thébaud, L.; Villechaise, P.; Crozet, C.; Devaux, A.; Béchet, D.; Franchet, J.-M.; Rouffié, A.-L.; Mills, M.; Cormier, J. Is there an optimal grain size for creep resistance in Ni-based disk superalloys? Mater. Sci. Eng. A 2018, 716, 274–283. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, P.; Wen, Z.; Xu, Z.; He, P.; Yue, Z. Study on creep properties of nickel-based superalloy blades based on microstructure characteristics. J. Alloys Compd. 2022, 890, 161710. [Google Scholar] [CrossRef]
- Shao, J.; Yu, G.; He, X.; Li, S.; Chen, R.; Zhao, Y. Grain size evolution under different cooling rate in laser additive manufacturing of superalloy. Opt. Laser Technol. 2019, 119, 105662. [Google Scholar] [CrossRef]
- Kou, S. Welding Metallurgy; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Yan, S.; Meng, Z.; Chen, B.; Tan, C.; Song, X.; Wang, G. Experimental study on the grain evolution induced by thermal characteristics during oscillation laser welding of IN718. Mater. Lett. 2022, 323, 132581. [Google Scholar] [CrossRef]
- Keshavarz, M.K.; Turenne, S.; Bonakdar, A. Solidification behavior of inconel 713LC gas turbine blades during electron beam welding. J. Manuf. Process 2018, 31, 232–239. [Google Scholar] [CrossRef]
- Kou, S.; Le, Y. Welding Parameters and the Grain Structure of Weld Metal—A Thermodynamic Consideration. Metall. Trans. A Phys. Metall. Mater. Sci. 1988, 19A, 1075–1082. [Google Scholar] [CrossRef]
- Xiao, M.; Poon, C.; Wanjara, P.; Jahazi, M.; Fawaz, Z.; Krimbalis, P. Optimization of Nd:YAG-Laser Welding Process for Inconel 718 Alloy. Mater. Sci. Forum 2007, 546–549, 1305–1308. [Google Scholar] [CrossRef]
- Krenz, D.; Egbewande, A.T.; Zhang, H.R.; Ojo, O.A. Single pass laser joining of Inconel 718 superalloy with filler. Mater. Sci. Technol. 2011, 27, 268–274. [Google Scholar] [CrossRef]
- Sun, W.; Wang, S.; Tan, G.; Xin, J.; Hong, M.; Wu, M.; Chen, Y. Microstructure and mechanical properties of Inconel713C Ni3Al-based superalloy joint welded by electron beam feeding wire welding technology. J. Manuf. Process 2023, 89, 50–63. [Google Scholar] [CrossRef]
- Banerjee, K.; Richards, N.L.; Chaturvedi, M.C. Effect of filler alloys on heat-affected zone cracking in preweld heat-treated IN-738 LC gas-tungsten-arc welds. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2005, 36, 1881–1890. [Google Scholar] [CrossRef]
- Ola, O.T.; Ojo, O.A.; Chaturvedi, M.C. Role of filler alloy composition on laser arc hybrid weldability of nickel-base IN738 superalloy. Mater. Sci. Technol. 2014, 30, 1461–1469. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, Z.; Zhang, C.H.; Liu, A.M. A comparison of microstructure and mechanical properties of welded thin Ti6Al4V with three different types of laser. Mater. Res. Innov. 2015, 19, S187–S192. [Google Scholar] [CrossRef]
- Ren, W.; Lu, F.; Yang, R.; Liu, X.; Li, Z.; Elmi Hosseini, S.R. A comparative study on fiber laser and CO2 laser welding of Inconel 617. Mater. Des. 2015, 76, 207–214. [Google Scholar] [CrossRef]
- Hong, J.K.; Park, J.H.; Park, N.K.; Eom, I.S.; Kim, M.B.; Kang, C.Y. Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding. J. Mater. Process. Technol. 2008, 201, 515–520. [Google Scholar] [CrossRef]
- Saurabh, S.K.; Chand, P.; Yadav, U.S. Study of the effect of laser beam welding on joint of Nimonic 80A superalloy: An experimental approach. Int. J. Adv. Manuf. Technol. 2024, 133, 5501–5513. [Google Scholar] [CrossRef]
- das Nevesa, M.D.M.; Lottob, A.; Berrettac, J.R.; de Rossid, W.; Júniord, N.D.V. Microstructure development in Nd:YAG laser welding of AISI 304 and Inconel 600. Weld. Int. 2010, 24, 104–113. [Google Scholar] [CrossRef]
- Tuissi, A.; Besseghini, S.; Ranucci, T.; Squatrito, F.; Pozzi, M. Effect of Nd-YAG laser welding on the functional properties of the Ni-49.6at.%Ti. Mater. Sci. Eng. A 1999, 273–275, 813–817. [Google Scholar] [CrossRef]
- Gobbi, S.; Zhang, L.; Norris, J.; Richter, K.H.; Loreau, J.H. High powder CO2 and Nd-YAG laser welding of wrought Inconel 718. J. Mater. Process. Technol. 1996, 56, 333–345. [Google Scholar] [CrossRef]
- Pang, M.; Yu, G.; Wang, H.H.; Zheng, C.Y. Microstructure study of laser welding cast nickel-based superalloy K418. J. Mater. Process. Technol. 2008, 207, 271–275. [Google Scholar] [CrossRef]
- Kuo, T.Y.; Lin, H.C. Effects of pulse level of Nd-YAG laser on tensile properties and formability of laser weldments in automotive aluminum alloys. Mater. Sci. Eng. A 2006, 416, 281–289. [Google Scholar] [CrossRef]
- Barbieri, G.; Cognini, F.; de Crescenzo, C.; Fava, A.; Moncada, M.; Montanari, R.; Richetta, M.; Varone, A. Process Optimization in Laser Welding of IN792 DS Superalloy. Metals 2024, 14, 124. [Google Scholar] [CrossRef]
- Moradi, M.; Ghoreishi, M. Influences of laser welding parameters on the geometric profile of NI-base superalloy Rene 80 weld-bead. Int. J. Adv. Manuf. Technol. 2011, 55, 205–215. [Google Scholar] [CrossRef]
- Saurabh, S.K.; Chand, P.; Yadav, U.S. Multi-objective optimization and fracture analysis of laser weld joints of Ni-Cr superalloy 80 A for gas turbine components. J. Mech. Sci. Technol. 2024, 38, 4867–4876. [Google Scholar] [CrossRef]
- Pakniat, M.; Ghaini, F.M.; Torkamany, M.J. Hot cracking in laser welding of Hastelloy X with pulsed Nd: YAG and continuous wave fiber lasers. Mater. Des. 2016, 106, 177–183. [Google Scholar] [CrossRef]
- Jiang, Z.; Tao, W.; Yu, K.; Tan, C.; Chen, Y.; Li, L.; Li, Z. Comparative study on fiber laser welding of GH3535 superalloy in continuous and pulsed waves. Mater. Des. 2016, 110, 728–739. [Google Scholar] [CrossRef]
- Gandy, D.W.; Frederick, G.; Stover, J.T.; Viswanathan, R. Overview of hot section components repair methods. In ASM Materials Solutions Conference & Exposition, Energy & Utilities Program; ASM International: St. Louis, MO, USA, 2000. [Google Scholar]
- Zhu, Z.; Ma, X.; Mi, G.; Wang, C. Electron microscopy study of laser welded GH909 superalloy joint. J. Mater. Res. Technol. 2020, 9, 15525–15536. [Google Scholar] [CrossRef]
- Yan, F.; Hu, C.; Zhang, X.; Cai, Y.; Wang, C.; Wang, J.; Hu, X. Influence of heat input on HAZ liquation cracking in laser welded GH909 alloy. Opt. Laser Technol. 2017, 92, 44–51. [Google Scholar] [CrossRef]
- Ojo, O.A. Intergranular liquation cracking in heat affected zone of a welded nickel based superalloy in as cast condition. Mater. Sci. Technol. 2007, 23, 1149–1155. [Google Scholar] [CrossRef]
- Osoba, L.O.; Ding, R.G.; Ojo, O.A. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy. Mater. Charact. 2012, 65, 93–99. [Google Scholar] [CrossRef]
- Palanivel, R.; Dinaharan, I.; Laubscher, R.F.; Alarifi, I.M. Effect of Nd:YAG laser welding on microstructure and mechanical properties of Incoloy alloy 800. Opt. Laser Technol. 2021, 140, 107039. [Google Scholar] [CrossRef]
- Wang, N.; Mokadem, S.; Rappaz, M.; Kurz, W. Solidification cracking of superalloy single- and bi-crystals. Acta Mater. 2004, 52, 3173–3182. [Google Scholar] [CrossRef]
- Rong, P.; Wang, N.; Wang, L.; Yang, R.N.; Yao, W.J. The influence of grain boundary angle on the hot cracking of single crystal superalloy DD6. J. Alloys Compd. 2016, 676, 181–186. [Google Scholar] [CrossRef]
- Babu, S.S.; David, S.A.; Park, J.W.; Vitek, J.M. Joining of nickel base superalloy single crystals. Sci. Technol. Weld. Join. 2004, 9, 1–12. [Google Scholar] [CrossRef]
- Vitek, J.M.; Babu, S.S.; Park, J.W.; David, S.A. Analysis of stray grain formation in single-crystal nickel-based superalloy welds. In Proceedings of the International Symposium on Superalloys, Champion, PA, USA, 19–23 September 2004; pp. 459–465. [Google Scholar] [CrossRef]
- Wang, Y.L.; Ojo, O.A.; Ding, R.G.; Chaturvedi, M.C. Weld metal cracking in laser beam welded single crystal nickel base superalloys. Mater. Sci. Technol. 2009, 25, 68–75. [Google Scholar] [CrossRef]
- Churchman, C.; Bonifaz, E.A.; Richards, N.L. Comparison of single crystal Ni based superalloy repair by gas tungsten arc and electron beam processes. Mater. Sci. Technol. 2011, 27, 811–817. [Google Scholar] [CrossRef]
- Ferro, P.; Zambon, A.; Bonollo, F. Investigation of electron-beam welding in wrought Inconel 706—Experimental and numerical analysis. Mater. Sci. Eng. A 2005, 392, 94–105. [Google Scholar] [CrossRef]
- Siddharth, P.N.; Narayanan, C.S. A review on Electron Beam Welding process. J. Phys. Conf. Ser. 2020, 1706, 012208. [Google Scholar] [CrossRef]
- Richards, N.L.; Nakkalil, R.; Chaturvedi, M.C. The influence of electron-beam welding parameters on heat-affected-zone microfissuring in INCOLOY 903. Metall. Mater. Trans. A 1994, 25, 1733–1745. [Google Scholar] [CrossRef]
- Choudhury, B.; Chandrasekaran, M. Microstructural Investigation and Integrated Optimization of Weld Bead Characteristics in Electron Beam Welding of Inconel 825. Trans. Indian. Inst. Met. 2021, 74, 2681–2701. [Google Scholar] [CrossRef]
- Madhusudhana Reddy, G.; Srinivasa Murthy, C.V.; Srinivasa Rao, K.; Prasad Rao, K. Improvement of mechanical properties of Inconel 718 electron beam welds-influence of welding techniques and postweld heat treatment. Int. J. Adv. Manuf. Technol. 2009, 43, 671–680. [Google Scholar] [CrossRef]
- Sun, W.; Wang, S.; Hong, M.; Xin, J.; Chen, Y.; Zhang, Z.; Chen, Y. Effect of heat input on microstructure and mechanical properties of IC10 Ni3Al-based superalloy electron beam welding joint. Vacuum 2020, 182, 109765. [Google Scholar] [CrossRef]
- Mei, Y.; Liu, Y.; Liu, C.; Li, C.; Yu, L.; Guo, Q.; Li, H. Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718. Mater. Des. 2016, 89, 964–977. [Google Scholar] [CrossRef]
- Chen, G.Q.; Zhang, B.G.; Lü, T.M.; Feng, J.C. Causes and control of welding cracks in electron-beam-welded superalloy GH4169 joints. Trans. Nonferr. Met. Soc. China (Engl. Ed.) 2013, 23, 1971–1976. [Google Scholar] [CrossRef]
- Arulmurugan, B.; Agilan, M.; Jerome, S.; Arivarasu, M.; Manikandan, M.; Srikanth, A.; Arivazhagan, N. Investigation of metallurgical and mechanical properties of 21st century nickel-based superalloy 686 by electron beam welding technique. Sadhana—Acad. Proc. Eng. Sci. 2018, 43, 117. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, K.F.; Zhang, B.G.; Jiang, S.S.; Zhang, B.W. Microstructures and high temperature mechanical properties of electron beam welded Inconel 718 superalloy thick plate. Trans. Nonferr. Met. Soc. China (Engl. Ed.) 2011, 21, s315–s322. [Google Scholar] [CrossRef]
- Sun, W.; Wang, S.; Xin, J.; Chen, Y.; Pang, Y.; Jia, Y. Optimizing for IC10 single crystal Ni3Al-based alloy joint by electron beam welding with chemical composition controlling. Mater. Des. 2020, 196, 109172. [Google Scholar] [CrossRef]
- OdabaşI, A.; Ünlü, N.; Göller, G.; Eruslu, M.N. A study on laser beam welding (LBW) technique: Effect of heat input on the microstructural evolution of superalloy inconel 718. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2010, 41, 2357–2365. [Google Scholar] [CrossRef]
- Taheri, M. Analysis of Solidification and Liquation Cracks in the Electron Beam Welding of IN738 Superalloy. Metallogr. Microstruct. Anal. 2021, 10, 815–822. [Google Scholar] [CrossRef]
- Han, K.; Wang, H.; Shen, L.; Zhang, B. Analysis of cracks in the electron beam welded joint of K465 nickel-base superalloy. Vacuum 2018, 157, 21–30. [Google Scholar] [CrossRef]
- Vishwakarma, K.R.; Richards, N.L.; Chaturvedi, M.C. Microstructural analysis of fusion and heat affected zones in electron beam welded ALLVAC® 718PLUSTM superalloy. Mater. Sci. Eng. A 2008, 480, 517–528. [Google Scholar] [CrossRef]
- Taheri, M.; Kashani-Bozorg, S.F.; Alizadeh, A.; Beni, M.H.; Jam, J.E.; Khorram, A. Analysis of liquation and solidification cracks in the electron beam welding of GTD-111 nickel-base superalloy joint. Mater. Res. Express 2021, 8, 076507. [Google Scholar] [CrossRef]
- Ojo, O.A.; Wang, Y.L.; Chaturvedi, M.C. Heat affected zone liquation cracking in electron beam welded third generation nickel base superalloys. Mater. Sci. Eng. A 2008, 476, 217–223. [Google Scholar] [CrossRef]
- Sun, W.; Xin, J.; Wang, S.; Chen, Y.; Huang, Y. Effect of deposited layer thickness on the microstructure and mechanical properties of IC10 single-crystal Ni3Al-based alloy electron beam-welded joint. J. Mater. Res. Technol. 2021, 11, 1206–1219. [Google Scholar] [CrossRef]
- Haines, M.; Plotkowski, A.; Frederick, C.L.; Schwalbach, E.J.; Babu, S.S. A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing. Comput. Mater. Sci. 2018, 155, 340–349. [Google Scholar] [CrossRef]
- Janaki Ram, G.D.; Venugopal Reddy, A.; Prasad Rao, K.; Madhusudhan Reddy, G. Microstructure and mechanical properties of Inconel 718 electron beam welds. Mater. Sci. Technol. 2005, 21, 1132–1138. [Google Scholar] [CrossRef]
- Chen, G.L. Theory of Superalloy; Metallurgy Industry Press: Beijing, China, 1988. [Google Scholar]
- Danis, Y.; Arvieu, C.; Lacoste, E.; Larrouy, T.; Quenisset, J.M. An investigation on thermal, metallurgical and mechanical states in weld cracking of Inconel 738LC superalloy. Mater. Des. 2010, 31, 402–416. [Google Scholar] [CrossRef]
- Wen, S.; Liu, Z.; Mi, D.; Li, B.; Yang, S.; Jiang, C. Revealing the fatigue crack propagation mechanism of a Ni-based superalloy electron beam welded joint through in-situ SEM observation. Int. J. Fatigue 2022, 162, 106955. [Google Scholar] [CrossRef]
- Special Metals Corporation Products. INCONEL® Alloy 625 (technical bulletins). Available online: www.specialmetals.com/products (accessed on 10 December 2024).
- Quist, W.E.; Taggart, R.; Polonis, D.H. The influence of iron and aluminum on the precipitation of metastable Ni3Nb phases in the Ni-Nb system. Metall. Trans. 1971, 2, 825–832. [Google Scholar] [CrossRef]
- Sundararaman, M.; Mukhopadhyay, P.; Banerjee, S. Precipitation of the δ-Ni3Nb phase in two nickel base superalloys. Metall. Trans. A 1988, 19, 453–465. [Google Scholar] [CrossRef]
- Kohl, H.; Peng, K. Thermal stability of the superalloys Inconel 625 and Nimonic 86. J. Nucl. Mater. 1981, 101, 243–250. [Google Scholar] [CrossRef]
- Sundararaman, M.; Mukhopadhyay, P. Heterogeneous Precipitation of the γ” Phase in Inconel 625. Mater. Sci. Forum 1985, 3, 273–280. [Google Scholar] [CrossRef]
- Floreen, S.; Fuchs, G.E.; Yang, W.J. The Metallurgy of Alloy 625. In Proceedings of the Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA, USA, 27–29 June 1994; pp. 13–38. [Google Scholar]
- Muzyka, D.R. The Superalloys; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Shankar, V.; Bhanu Sankara Rao, K.; Mannan, S.L. Microstructure and mechanical properties of Inconel 625 superalloy. J. Nucl. Mater. 2001, 288, 222–232. [Google Scholar] [CrossRef]
- Charles, T.; Tait, P. The performance of alloy 625 in long-term intermediate temperature applications. Int. J. Press. Vessel. Pip. 1994, 59, 41–49. [Google Scholar]
- Shoemaker, L.E. Alloys 625 and 725: Trends properties and applications. In Proceedings of the Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA, USA, 2–5 October 2005; pp. 409–418. [Google Scholar]
- Gessinger, G.H.; Bomford, M. Powder metallurgy of superalloys. Int. Metall. Rev. 1974, 19, 51–76. [Google Scholar] [CrossRef]
- Jelokhani-Niaraki, M.R.; Arab, N.B.M.; Naffakh-Moosavy, H.; Ghoreishi, M. The systematic parameter optimization in the Nd:YAG laser beam welding of Inconel 625. Int. J. Adv. Manuf. Technol. 2016, 84, 2537–2546. [Google Scholar] [CrossRef]
- Caiazzo, F.; Alfieri, V.; Cardaropoli, F.; Sergi, V. Investigation on edge joints of Inconel 625 sheets processed with laser welding. Opt. Laser Technol. 2017, 93, 180–186. [Google Scholar] [CrossRef]
- Hong, M.; Wang, S.; Sun, W.; Geng, Z.; Xin, J.; Ke, L. Effect of welding speed on microstructure and mechanical properties of selective laser melting Inconel 625 alloy laser welded joint. J. Mater. Res. Technol. 2022, 19, 2093–2103. [Google Scholar] [CrossRef]
- Ramkumar, K.D.; Mulimani, S.S.; Ankit, K.; Kothari, A.; Ganguly, S. Effect of grain boundary precipitation on the mechanical integrity of EBW joints of Inconel 625. Mater. Sci. Eng. A 2021, 808, 140926. [Google Scholar] [CrossRef]
- Romanin, L.; Ferro, P.; Bonollo, F.; Berto, F. A numerical and experimental analysis of Inconel 625 electron-beam welding—Thermal aspects. Procedia Struct. Integr. 2019, 18, 63–74. [Google Scholar] [CrossRef]
- Li, J.; Yao, J.; Zhao, G.; Li, H.; Li, Y.; Liu, J. The Influence of Different Focusing Currents on the Microstructure Evolution and Wear Properties of a Scanning Electron Beam Modified Inconel 625 Nickel Base Alloy Surface. Crystals 2023, 13, 325. [Google Scholar] [CrossRef]
- Shakil, M.; Ahmad, M.; Tariq, N.H.; Hasan, B.A.; Akhter, J.I.; Ahmed, E.; Mehmood, M.A.; Choudhry, M.A.; Iqbal, M. Microstructure hardness studies of electron beam welded Inconel, 6.2.5.; stainless steel, 3.0.4.L. Vacuum 2014, 110, 121–126. [Google Scholar] [CrossRef]
- Ramkumar, K.D.; Sridhar, R.; Periwal, S.; Oza, S.; Saxena, V.; Hidad, P.; Arivazhagan, N. Investigations on the structure—Property relationships of electron beam welded Inconel 625 and UNS 32205. Mater. Des. 2015, 68, 158–166. [Google Scholar] [CrossRef]
- Wiednig, C.; Lochbichler, C.; Enzinger, N.; Beal, C.; Sommitsch, C. Dissimilar electron beam welding of nickel base alloy 625 and 9% Cr steel. Procedia Eng. 2014, 86, 184–194. [Google Scholar] [CrossRef]
- Qi, H.; Azer, M.; Ritter, A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2009, 40, 2410–2422. [Google Scholar] [CrossRef]
- Zhong, C.; Gasser, A.; Kittel, J.; Wissenbach, K.; Poprawe, R. Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition. Mater. Des. 2016, 98, 128–134. [Google Scholar] [CrossRef]
- Çam, G.; Koçak, M. Progress in joining of advanced materials. Int. Mater. Rev. 1998, 43, 1–44. [Google Scholar] [CrossRef]
- Sharma, S.K.; Biswas, K.; Nath, A.K.; Manna, I.; Dutta Majumdar, J. Microstructural change during laser welding of Inconel 718. Optik 2020, 218, 165029. [Google Scholar] [CrossRef]
- Janaki Ram, G.D.; Venugopal Reddy, A.; Prasad Rao, K.; Reddy, G.M.; Sarin Sundar, J.K. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds. J. Mater. Process. Technol. 2005, 167, 73–82. [Google Scholar] [CrossRef]
- Smith, S.A.; West, G.; Chi, K.; Gamble, W.; Thomson, R. Microstructural Evolution in Nimonic 263 for High Temperature Power Plant. In Advances in Materials Technology for Power Plants, Proceedings from the 6th International Conference, Santa Fe, NM, USA, 31 August–3 September 2010; ASM International: Materials Park, OH, USA, 2015; pp. 110–126. [Google Scholar]
- Zhao, J.C.; Ravikumar, V.; Beltran, A.M. Phase precipitation and phase stability in Nimonic 263. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2001, 32, 1271–1282. [Google Scholar] [CrossRef]
- Detrois, M.; Jablonski, P.D.; Hawk, J.A. The effect of η phase precipitates on the creep behavior of alloy 263 and variants. Mater. Sci. Eng. A 2021, 799, 140337. [Google Scholar] [CrossRef]
- Jeon, M.; Lee, J.H.; Woo, T.K.; Kim, S. Effect of welding and post-weld heat treatment on tensile properties of Nimonic 263 at room and elevated temperatures. Metall. Mater. Trans. A Phys. 2011, 42, 974–985. [Google Scholar] [CrossRef]
- Li, Y.; Fan, X.; Cui, H.; Lu, F.; Tang, X. The correlated mechanism of creep fracture and microstructure evolution for precipitated Nimonic 263 superalloy welding joint. Sci. Technol. Weld. Join. 2020, 26, 37–46. [Google Scholar] [CrossRef]
- Sharma, A.K.; Anand, M.; Kumar, V.; Kumar, S.; Das, A.K. Laser Beam Treatment of Nimonic C263 Alloy: Study of Mechanical and Metallurgical Properties. In Advances in Micro and Nano Manufacturing and Surface Engineering; Lecture Notes on Multidisciplinary Industrial Engineering; Shunmugam, M., Kanthababu, M., Eds.; Springer: Singapore, 2019; pp. 633–646. [Google Scholar] [CrossRef]
C | Co | Cr | Mo | Ti | Si | Fe | Mn | Al | Nb + Ta | Ni |
---|---|---|---|---|---|---|---|---|---|---|
0.1 max | 1.0 max | 20–23 | 8.0–10.0 | 0.4 max | 0.5 max | 5.0 max | 0.5 max | 0.4 max | 3.15–4.45 | Bal. |
IN 625-LBW | |||||
---|---|---|---|---|---|
Ref. | Laser Types | Thickness [mm] | Laser Power [W] | Welding Speed [mm/min] | Comments |
[131] | Nd-YAG | 0.5 | 260 | 72 | Optimal parameters to maximize weld strength with spot size 180 µm |
230 | 360 | Optimal parameters to minimize microhardness with spot size 540 µm | |||
[133] | Fiber | 5 | 5000 | 1500–1800–2100 | Study on the welding speed effect |
[132] | Diode | 0.7 | 800–1000–1200 | 1200–2100–3000–3900 | Study on the heat input effect |
[42] | Fiber | 1.5 | 300–350–400 | 300–400–500 | Numerical investigation |
[41] | Nd-YAG | 1.5 | 75–100–120–130 | 90–120–180–240 | Numerical investigation |
[38] | CO2 | 5 | 3000–3300 | 1000 | Optimal parameters to achieve full penetration |
IN625-EBW | |||||
---|---|---|---|---|---|
Ref. | Thickness [mm] | Acc. Voltage [kV] | Current [mA] | Welding Speed [mm/min] | Comments |
[134] | 5 | 60 | 100 | 1500 | Study on the effect of grain boundary precipitation |
[135] | 2.5 | 150 | 15–14.5 | 720 | Numerical investigation |
[136] | 10 | 60 | 10 | 240 | Study on the beam focus current effect |
Ni | Cr | Mo | Nb(+Ta) | Co | Ti | Al | Si | Mn | C | P | S | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IN718 | 50.0–55.0 | 17.0–21.0 | 2.80– 3.30 | 4.75– 5.50 | 1.00 max | 0.65–1.15 | 0.20– 0.80 | 0.35 max | 0.35 max | 0.08 max | 0.015 max | 0.015 max | Bal |
AF955 | 57.4 | 21.6 | 5.88 | 4.80 | 0.86 | 0.43 | 0.09 | 0.08 | 0.015 | 0.0086 | 0.0002 | Bal |
IN 718-LBW | |||||
---|---|---|---|---|---|
Ref. | Laser Types | Thickness [mm] | Laser Power [W] | Welding Speed [mm/min] | Comments |
[108] | CO2 | 1.6 | 2900 | 2336.4 | Effect of the heat input |
2512 | 1905 | ||||
2000 | 1193.4 | ||||
1500 | 711 | ||||
[63] | Fiber | 3.6 | 3200 | 600 | Effect of the laser oscillation |
[143] | Fiber | 3 | 1800 | 1400 | Optimal parameters for defect-free welds |
[144] | Nd-YAG pulsed | 2 | 400 | 120 | Effect of heat treatments |
[73] | CO2 | 5 | 60008000 | 25004000 | Optimal parameters for defect-free welds |
[66] | Nd-YAG | 2 | 3000–3500 | 3000–4500 | Effect of the filler material rate |
[57] | Continuous laser | 3.2 | 2300 | 499.8 | Investigation on crack susceptibility |
Pulsed laser | 3166 (peak) | 499.8 |
IN718-EBW | |||||
---|---|---|---|---|---|
Ref. | Thickness [mm] | Acc. Voltage [kV] | Current [mA] | Welding Speed [mm/min] | Comments |
[106] | 12 | 1st pass: 60 2nd pass: 60 | 120 30 | 66 66 | Effect of PWHT |
[101] | 3.1 | 55 with BO: 55 | 22 24–25 | 1500 1500 | Effect of beam oscillation (B.O.) patterns |
[116] | 2 | 60 | 20 | 480 | Effect of PWHT |
[103] | 1.6 | 125 | 65 | 1270 | Effect of pre-welding condition and welding speed |
Co | Cr | Mo | Ti | Fe | Mn | Al | Si | C | Ni |
---|---|---|---|---|---|---|---|---|---|
20.0 | 20.0 | 5.8 | 2.1 | 0.7 | 0.6 | 0.45 | 0.4 | 0.06 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donnini, R.; Varone, A.; Palombi, A.; Spiller, S.; Ferro, P.; Angella, G. High Energy Density Welding of Ni-Based Superalloys: An Overview. Metals 2025, 15, 30. https://doi.org/10.3390/met15010030
Donnini R, Varone A, Palombi A, Spiller S, Ferro P, Angella G. High Energy Density Welding of Ni-Based Superalloys: An Overview. Metals. 2025; 15(1):30. https://doi.org/10.3390/met15010030
Chicago/Turabian StyleDonnini, Riccardo, Alessandra Varone, Alessandra Palombi, Saveria Spiller, Paolo Ferro, and Giuliano Angella. 2025. "High Energy Density Welding of Ni-Based Superalloys: An Overview" Metals 15, no. 1: 30. https://doi.org/10.3390/met15010030
APA StyleDonnini, R., Varone, A., Palombi, A., Spiller, S., Ferro, P., & Angella, G. (2025). High Energy Density Welding of Ni-Based Superalloys: An Overview. Metals, 15(1), 30. https://doi.org/10.3390/met15010030