Determination of Diffusion Coefficients of Nickel and Vanadium into Stainless and Duplex Steel and Titanium
Abstract
:1. Introduction
2. Materials and Methods
3. Experiment and Results
3.1. Diffusion Bonding in the Gleeble 3500
3.2. Evaluation of Diffusion Kinetics
3.3. Calculation of Diffusion Coefficients
4. Discussion
5. Conclusions
- Diffusion takes place not only after reaching the test temperature but also during heating and cooling. The diffusion of Ni was slower than the diffusion of V. For austenitic stainless steels, the diffusion of V was very similar, but vanadium diffused into AISI 316L steel slightly more slowly. The reason for this slower diffusion may be due to the Mo content, which, because of its size, is used to strengthen the solid solution of the steels. AISI 316L steel has a significantly higher Mo content compared to AISI 304 steel.
- To determine DNi and DV for specific materials, the generalized Equation (4) was formulated in the range of applied temperatures (T) 1223.15–1423.15 K (for steel) and 1123.15–1323.15 K (for titanium). This equation can be used in the indicated temperature range to calculate the specific depth of the diffusion area at the interface between the base material and the used interlayer.
- Equation (5) was used to calculate the depth of the diffusion area in the range of applied temperatures (T) 1223.15–1423.15 K (for steel) and 1123.15–1323.15 K (for titanium), while dwell times (t) can be inserted into the equation from 1 up to 5 h. The specific results obtained by calculating Equation (5) also serve to optimize the thickness of the used interlayer. The initial diffusion depth (simple heating to the target temperature without holding at this temperature) of nickel was 4.46 µm into duplex steel and 5.48 µm into Ti Gr. 2 at 950 °C. At the same temperature, the initial diffusion depth of vanadium was 14.54 µm into duplex steel and 14.32 µm into Ti Gr. 2.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, W.; Zhang, Y.; Yu, D.; Sun, D.; Li, H. Research Progress on Control Strategy of Intermetallic Compounds in Welding Process of Heterogeneous Materials. Steel Res. Int. 2022, 93, 2100427. [Google Scholar] [CrossRef]
- Cooke, K.O.; Atieh, A.M. Current Trends in Dissimilar Diffusion Bonding of Titanium Alloys to Stainless Steels, Aluminium and Magnesium. J. Manuf. Mater. Process. 2020, 4, 39. [Google Scholar] [CrossRef]
- Velmurugan, C.; Senthilkumar, V.; Sarala, S.; Arivarasan, J. Low Temperature Diffusion Bonding of Ti-6Al-4V and Duplex Stainless Steel. J. Mater. Process. Technol. 2016, 234, 272–279. [Google Scholar] [CrossRef]
- Orhan, N.; Khan, T.; Eroğlu, M. Diffusion Bonding of a Microduplex Stainless Steel to Ti–6Al–4V. Scr. Mater. 2001, 45, 441–446. [Google Scholar] [CrossRef]
- Ghosh, M.; Bhanumurthy, K.; GB, K.; Krishnan, J.; Chatterjee, S. Strength of the Diffusion Bonded Joints between CP Ti and 304 Stainless Steel Processed below and above β-Transus. ISIJ Int. 2004, 44, 388–395. [Google Scholar] [CrossRef]
- Negemiya, A.; Selvarajan, R.; Sonar, T. Effect of Diffusion Bonding Time on Microstructure and Mechanical Properties of Dissimilar Ti6Al4V Titanium Alloy and AISI 304 Austenitic Stainless Steel Joints. Mater. Test. 2023, 65, 77–86. [Google Scholar] [CrossRef]
- Vigraman, T.; Ravindran, D.; Narayanasamy, R. Effect of Phase Transformation and Intermetallic Compounds on the Microstructure and Tensile Strength Properties of Diffusion-Bonded Joints between Ti–6Al–4V and AISI 304L. Mater. Des. (1980–2015) 2012, 36, 714–727. [Google Scholar] [CrossRef]
- Kumar, H.; Bhattacharya, S.; Keskar, N.A. Solid-State Diffusion Bonding of Pseudo-α-Ti Alloy to Ti-Stabilized Stainless Steel: With and Without Interlayer. J. Mater. Eng. Perform. 2022, 31, 7527–7538. [Google Scholar] [CrossRef]
- Balasubramanian, M. Development of Processing Windows for Diffusion Bonding of Ti–6Al–4V Titanium Alloy and 304 Stainless Steel with Silver as Intermediate Layer. Trans. Nonferrous Met. Soc. China 2015, 25, 2932–2938. [Google Scholar] [CrossRef]
- Kundu, S.; Ghosh, M.; Laik, A.; Bhanumurthy, K.; Kale, G.; Chatterjee, S. Diffusion Bonding of Commercially Pure Titanium to 304 Stainless Steel Using Copper Interlayer. Mater. Sci. Eng. A 2005, 407, 154–160. [Google Scholar] [CrossRef]
- Kundu, S.; Chatterjee, S. Interfacial Microstructure and Mechanical Properties of Diffusion-Bonded Titanium–Stainless Steel Joints Using a Nickel Interlayer. Mater. Sci. Eng. A 2006, 425, 107–113. [Google Scholar] [CrossRef]
- Wang, F.-L.; Sheng, G.-M.; Deng, Y.-Q. Impulse Pressuring Diffusion Bonding of Titanium to 304 Stainless Steel Using Pure Ni Interlayer. Rare Met. 2016, 35, 331–336. [Google Scholar] [CrossRef]
- Kundu, S.; Sam, S.; Chatterjee, S. Interfacial Reactions and Strength Properties in Dissimilar Titanium Alloy/Ni Alloy/Microduplex Stainless Steel Diffusion Bonded Joints. Mater. Sci. Eng. A 2013, 560, 288–295. [Google Scholar] [CrossRef]
- Mo, D.; Song, T.; Fang, Y.; Jiang, X.; Luo, C.Q.; Simpson, M.D.; Luo, Z. A Review on Diffusion Bonding between Titanium Alloys and Stainless Steels. Adv. Mater. Sci. Eng. 2018, 2018, 8701890. [Google Scholar] [CrossRef]
- Wang, H.; Paidar, M.; Kumar, N.K.; ElDin, H.M.S.; Kannan, S.; Abdullaev, S.; Mehrez, S. Influence of Bonding Time during Diffusion Bonding of Ti–6Al–4V to AISI 321 Stainless Steel on Metallurgical and Mechanical Properties. Vacuum 2024, 222, 113072. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, X.; Sun, H.; Song, T.; Mo, D.; Li, X.; Luo, Z. Interfacial Reaction and Microstructure Investigation of TC4/V/Cu/Co/316L Diffusion-Bonded Joints. Mater. Lett. 2020, 261, 127140. [Google Scholar] [CrossRef]
- Song, T.; Jiang, X.; Shao, Z.; Fang, Y.; Mo, D.; Zhu, D.; Zhu, M. Microstructure and Mechanical Properties of Vacuum Diffusion Bonded Joints between Ti-6Al-4V Titanium Alloy and AISI316L Stainless Steel Using Cu/Nb Multi-Interlayer. Vacuum 2017, 145, 68–76. [Google Scholar] [CrossRef]
- Li, P.; Li, J.; Xiong, J.; Zhang, F.; Raza, S.H. Diffusion Bonding Titanium to Stainless Steel Using Nb/Cu/Ni Multi-Interlayer. Mater. Charact. 2012, 68, 82–87. [Google Scholar] [CrossRef]
- Arun Negemiya, A.; Rajakumar, S.; Sonar, T.; Ivanov, M. Influence of Diffusion Bonding Pressure on Microstructural Features and Strength Performance of Dissimilar Ti–6Al–4V Alloy and AISI 304 Steel Joints Developed Using Copper Interlayer. J. Eng. Mater. Technol. 2023, 145, 041002. [Google Scholar] [CrossRef]
- Arun Negemiya, A.; Rajakumar, S.; Balasubramanian, V. Diffusion Bonding of a Titanium Alloy to Austenitic Stainless Steel Using Copper as an Interlayer. SN Appl. Sci. 2019, 1, 1128. [Google Scholar] [CrossRef]
- Cooke, K.O.; Richardson, A.; Khan, T.I.; Shar, M.A. High-Temperature Diffusion Bonding of Ti–6Al–4V and Super-Duplex Stainless Steel Using a Cu Interlayer Embedded with Alumina Nanoparticles. J. Manuf. Mater. Process. 2020, 4, 3. [Google Scholar] [CrossRef]
- Li, P.; Li, C.; Dong, H.; Wu, B.; Ma, Y.; Zou, C.; Yang, Y. Vacuum Diffusion Bonding of TC4 Titanium Alloy to 316L Stainless Steel with AlCoCrCuNi2 High-Entropy Alloy Interlayer. J. Alloys Compd. 2022, 909, 164698. [Google Scholar] [CrossRef]
- Kundu, S.; Chatterjee, S. Characterization of Diffusion Bonded Joint between Titanium and 304 Stainless Steel Using a Ni Interlayer. Mater. Charact. 2008, 59, 631–637. [Google Scholar] [CrossRef]
- Ghosh, M.; Kundu, S.; Chatterjee, S.; Mishra, B. Influence of Interface Microstructure on the Strength of the Transition Joint between Ti-6Al-4V and Stainless Steel. Metall. Mater. Trans. A 2005, 36, 1891–1899. [Google Scholar] [CrossRef]
- Aleman, B.; Gutiérrez, I.; Urcola, J.J. The Use of Kirkendall Effect for Calculating Intrinsic Diffusion Coefficients in a 316L/Ti6242 Diffusion Bonded Couple. Scr. Mater. 1997, 36, 509–515. [Google Scholar] [CrossRef]
- Aleman, B.; Gutiérrez, L.; Urcola, J. Interface Microstructures in Diffusion Bonding of Titanium Alloys to Stainless and Low Alloy Steels. Mater. Sci. Technol. 1993, 9, 633–641. [Google Scholar] [CrossRef]
- Bukovská, Š.; Moravec, J.; Švec, M. Kinetics of Nickel Diffusion into Austenitic Stainless Steels AISI 304 and 316L and Calculation of Diffusion Coefficients. Materials 2023, 16, 6783. [Google Scholar] [CrossRef]
AISI 304 | C | Cr | Mn | Mo | Ni | Si | S | P | Cu | N | |
Given by the standard | Min. | - | 17.50 | - | - | 8.00 | - | - | - | - | - |
Max. | <0.07 | 19.50 | 2.00 | - | 10.50 | 1.00 | 0.015 | 0.045 | - | - | |
Experiment | 0.045 | 18.37 | 1.66 | - | 8.11 | 0.23 | 0.013 | - | - | ||
AISI 316L | |||||||||||
Given by the standard | Min. | - | 16.50 | - | 2.00 | 10.00 | - | - | - | - | - |
Max. | <0.03 | 18.50 | 2.00 | 2.50 | 13.00 | 1.00 | 0.015 | 0.045 | - | - | |
Experiment | 0.03 | 18.50 | 1.96 | 2.24 | 13.10 | 1.02 | 0.02 | - | - | ||
1.4162 | |||||||||||
Given by the standard | Min. | 21.00 | 4.00 | 0.10 | 1.35 | 0.10 | 0.20 | ||||
Max. | 0.04 | 22.00 | 6.00 | 0.80 | 1.70 | 1.00 | 0.015 | 0.04 | 0.80 | 0.25 | |
Experiment | 0.04 | 21.45 | 4.86 | 0.27 | 1.51 | 0.72 | 0.0019 | 0.035 | 0.35 | 0.25 |
Titanium Grade 2 | Ti | Fe | O | N | C | H | |
---|---|---|---|---|---|---|---|
Material certificate | Min. max. | Remainder | 0.30 | 0.25 | 0.03 | 0.08 | 0.15 |
Experiment | Remainder | 0.09 | 0.10 | 0.01 | 0.02 | 0.004 |
Sample No. | Ra [µm] | Sa [µm] |
---|---|---|
AISI 304 | 0.259 | - |
AISI 316L | 0.260 | - |
Duplex 1.4162 | 0.265 | - |
Ti grade 2 | 0.635 | - |
Ni | - | 0.101 |
V | - | 0.091 |
Target Temperature | hNi [µm] | |||
Duplex Steel | Ti gr. 2 | |||
850 °C | - | 4.76 | ||
950 °C | 4.46 | 5.48 | ||
1050 °C | 6.69 | - | ||
1150 °C | 8.12 | - | ||
Target Temperature | hV [µm] | |||
AISI 304 | AISI 316L | Duplex Steel | Ti gr. 2 | |
850 °C | - | - | - | 9.07 |
950 °C | 9.77 | 7.38 | 14.54 | 14.32 |
1050 °C | 23.84 | 20.28 | 23.36 | 34.87 |
1150 °C | 58.36 | 54.81 | 53.61 | - |
Temperature | DNi [m2·s−1] | |||
---|---|---|---|---|
Dwell Time on Temperature 1 h | Dwell Time on Temperature 5 h | |||
Duplex Steel | Ti gr. 2 | Duplex Steel | Ti gr. 2 | |
850 °C | - | 3.36 × 10−15 | - | 1.64 × 10−15 |
950 °C | 1.80 × 10−15 | 1.14 × 10−14 | 1.33 × 10−15 | 6.45 × 10−15 |
1050 °C | 5.96 × 10−15 | - | 3.88 × 10−15 | - |
1150 °C | 2.39 × 10−14 | - | 1.98 × 10−14 | - |
Temperature | DV [m2·s−1] | |||
Dwell Time on Temperature 1 h | Dwell Time on Temperature 5 h | |||
AISI 304 | AISI 316L | AISI 304 | AISI 316L | |
950 °C | 6.18 × 10−15 | 4.23 × 10−15 | 4.69 × 10−15 | 2.28 × 10−15 |
1050 °C | 9.18 × 10−14 | 3.94 × 10−14 | 6.17 × 10−13 | 6.01 × 10−13 |
1150 °C | 7.09 × 10−13 | 6.30 × 10−13 | 2.28 × 10−13 | 7.17 × 10−13 |
Duplex Steel | Ti gr. 2 | Duplex Steel | Ti gr. 2 | |
850 °C | - | 5.67 × 10−15 | - | 8.55 × 10−15 |
950 °C | 5.89 × 10−15 | 1.70 × 10−14 | 2.27 × 10−15 | 1.20 × 10−14 |
1050 °C | 4.64 × 10−14 | 7.13 × 10−14 | 2.17 × 10−13 | 6.01 × 10−13 |
1150 °C | 2.40 × 10−13 | - | 1.97 × 10−13 | - |
Factor | Duplex Steel | Titan Grade 2 | ||
---|---|---|---|---|
p-Value | Evaluation | p-Value | Evaluation | |
Time | 0.0008 | Has an effect | 0.0156 | Has an effect |
Temperature | 5.40 × 10−23 | Has an effect | 0.0110 | Has an effect |
Factor | AISI 304 | AISI 316L | ||
p-Value | Evaluation | p-Value | Evaluation | |
Time | 0.5641 | Has not an effect | 0.0228 | Has an effect |
Temperature | 5.78 × 10−12 | Has an effect | 2.92 × 10−12 | Has an effect |
Factor | Duplex Steel | Titan Grade 2 | ||
p-Value | Evaluation | p-Value | Evaluation | |
Time | 0.0012 | Has an effect | 2.34 × 10−16 | Has an effect |
Temperature | 3.77 × 10−9 | Has an effect | 8.15 × 10−24 | Has an effect |
Material | Duplex Steel | Ti gr. 2 | AISI 304 | AISI 316L | |
---|---|---|---|---|---|
k coefficient for Ni | 5 × 10−9 | 5.5 × 10−10 | - | - | |
x coefficient for Ni | 14,317 | 10,467 | - | - | |
k coefficient for V | 6.55 × 10−4 | 5.0015 × 10−6 | 2.35 × 10−3 | 1.3129 | |
x coefficient for V | 22,689 | 14,779 | 24,054 | 29,701 | |
The temperature range of applicability: 1123.15–1323.15 K, 1223.15–1423.15 K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vávrová, Š.; Švec, M.; Moravec, J.; Klápště, D. Determination of Diffusion Coefficients of Nickel and Vanadium into Stainless and Duplex Steel and Titanium. Metals 2025, 15, 8. https://doi.org/10.3390/met15010008
Vávrová Š, Švec M, Moravec J, Klápště D. Determination of Diffusion Coefficients of Nickel and Vanadium into Stainless and Duplex Steel and Titanium. Metals. 2025; 15(1):8. https://doi.org/10.3390/met15010008
Chicago/Turabian StyleVávrová, Šárka, Martin Švec, Jaromír Moravec, and Daniel Klápště. 2025. "Determination of Diffusion Coefficients of Nickel and Vanadium into Stainless and Duplex Steel and Titanium" Metals 15, no. 1: 8. https://doi.org/10.3390/met15010008
APA StyleVávrová, Š., Švec, M., Moravec, J., & Klápště, D. (2025). Determination of Diffusion Coefficients of Nickel and Vanadium into Stainless and Duplex Steel and Titanium. Metals, 15(1), 8. https://doi.org/10.3390/met15010008