Prediction of Creep Rupture Life of 5Cr-0.5Mo Steel Using Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Correlation Analysis
2.3. Data Preprocessing
2.4. ML Methods
- (i)
- Random Forest (RF)—An ensemble learning method that constructs multiple decision trees and aggregates their predictions, effectively reducing overfitting and improving accuracy [32].
- (ii)
- Gradient Boosting (GB)—A boosting technique that sequentially enhances weak learners by correcting previous errors, making it highly effective for structured data [33].
- (iii)
- Linear Regression (LR)—A fundamental statistical approach that models relationships between variables based on linear assumptions. While simple and interpretable, it is less suited for capturing complex, non-linear patterns [34].
- (iv)
- Artificial Neural Networks (ANN)—Composed of interconnected layers of neurons that mimic brain-like processing, enabling deep learning and high accuracy, particularly for non-linear and high-dimensional data [35].
- (v)
- AdaBoost (AB)—A boosting technique that iteratively adjusts weights on misclassified instances, enhancing model robustness by improving weak classifiers [36].
- (vi)
- Extreme Gradient Boosting (XGB)—An advanced variant of GB that incorporates regularization techniques and computational optimizations, making it one of the most powerful ML models for structured datasets [37].
2.5. Performance Evaluation
3. Results and Discussion
3.1. ML Methods and Their Predictability
3.2. Prediction of the Effect of Input Variables on Creep Rupture Life
3.3. Prediction of the Combined Effect of Two Variables on Creep Rupture Life
3.4. Quantitative Estimation of the Effect of Temperature and Stress
3.5. Graphical User Interface
3.6. Optimization of Inputs to Get Maximum Creep Rupture Life
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
LR | Linear Regression |
AB | AdaBoost |
RF | Random Forest |
GB | Gradient boosting |
NIMS | National Institute for Materials Science |
NMI | Non-metallic Inclusions |
AGS | Austenite Grain Size |
HRB | Hardness Rockwell Scale B |
RMSE | Root Mean Square Error |
adj. R2 | Adjusted R-squared |
References
- Bhadeshia, H.K.D.H. Design of ferritic creep-resistant steels. ISIJ Int. 2001, 41, 626–640. [Google Scholar] [CrossRef]
- Masuyama, F. History of power plants and progress in heat resistant steels. ISIJ Int. 2001, 41, 612–625. [Google Scholar] [CrossRef]
- Xia, T.; Ma, Y.; Zhang, Y.; Li, J.; Xu, H. Effect of Mo and Cr on the Microstructure and Properties of Low-Alloy Wear-Resistant Steels. Materials 2024, 17, 2408. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Inam, A.; Tiwari, S.; Seol, J.B. Microstructural, mechanical, and electrochemical analysis of carbon doped AISI carbon steels. Appl. Microsc. 2022, 52, 10. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cao, L.; Li, Y.; Schneider, M.; Detemple, E.; Eggeler, G. Effect of cooling rate on the microstructure and mechanical properties of a low-carbon low-alloyed steel. J. Mater. Sci. 2021, 56, 11098–11113. [Google Scholar] [CrossRef]
- Yamabe, J.; Matsunaga, H.; Furuya, Y.; Hamada, S.; Itoga, H.; Yoshikawa, M.; Takeuchi, E.; Matsuoka, S. Qualification of chromium–molybdenum steel based on the safety factor multiplier method in CHMC1-2014. Int. J. Hydrogen Energy 2015, 40, 719–728. [Google Scholar] [CrossRef]
- Matsunaga, H.; Yoshikawa, M.; Kondo, R.; Yamabe, J.; Matsuoka, S. Slow strain rate tensile and fatigue properties of Cr–Mo and carbon steels in a 115 MPa hydrogen gas atmosphere. Int. J. Hydrogen Energy 2015, 40, 5739–5748. [Google Scholar] [CrossRef]
- Xia, Z.-X.; Wang, C.-Y.; Zhao, Y.-F.; Zhang, G.-D.; Zhang, L.; Meng, X.-M. Laves Phase Formation and Its Effect on Mechanical Properties in P91 Steel. Acta Metall. Sin. (Engl. Lett.) 2015, 28, 1238–1246. [Google Scholar] [CrossRef]
- Tanaka, K.; Shimonishi, D.; Nakagawa, D.; Ijiri, M.; Yoshimura, T. Stress Relaxation Behavior of Cavitation-Processed Cr–Mo Steel and Ni–Cr–Mo Steel. Appl. Sci. 2019, 9, 299. [Google Scholar] [CrossRef]
- Jacob, K.; Roy, A.; Gururajan, M.P.; Jaya, B.N. Effect of dislocation network on precipitate morphology and deformation behaviour in maraging steels: Modelling and experimental validation. Materialia 2022, 21, 101358. [Google Scholar] [CrossRef]
- Saucedo-Muñoz, M.L.; Lopez-Hirata, V.M.; Dorantes-Rosales, H.J.; Villegas-Cardenas, J.D.; Rivas-Lopez, D.I.; Beltran-Zuñiga, M.; Ferreira-Palma, C.; Moreno-Palmerin, J. Phase Transformations of 5Cr-0.5Mo-0.1C Steel after Heat Treatment and Isothermal Exposure. Metals 2022, 12, 1378. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Kim, Y.-K.; Tiwari, S.; Lee, C.H.; Jo, W.H.; Sung, H.; Cho, K.-S.; Kang, S.-G.; Na, Y.-S.; Seol, J.B. Serration-induced plasticity in phase transformative stainless steel 316L upon ultracold deformation at 4.2 K. Mater. Sci. Eng. A 2025, 921, 147591. [Google Scholar] [CrossRef]
- Baltušnikas, A.; Grybėnas, A.; Kriūkienė, R.; Lukošiūtė, I.; Makarevičius, V. Evolution of Crystallographic Structure of M23C6 Carbide Under Thermal Aging of P91 Steel. J. Mater. Eng. Perform. 2019, 28, 1480–1490. [Google Scholar] [CrossRef]
- Thomson, R.C.; Miller, M.K. Carbide precipitation in martensite during the early stages of tempering Cr- andMo-containing low alloy steels. Acta Mater. 1998, 46, 2203–2213. [Google Scholar] [CrossRef]
- Abe, F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr–W steels. Mater. Sci. Eng. A 2004, 387–389, 565–569. [Google Scholar] [CrossRef]
- Parker, J. In-service behavior of creep strength enhanced ferritic steels Grade 91 and Grade 92—Part 1 parent metal. Int. J. Press. Vessel. Pip. 2013, 101, 30–36. [Google Scholar] [CrossRef]
- Das, S.K.; Joarder, A.; Mitra, A. Magnetic Barkhausen emissions and microstructural degradation study in 1.25 Cr–0.50 Mo steel during high temperature exposure. NDT E Int. 2004, 37, 243–248. [Google Scholar] [CrossRef]
- Viswanathan, R. Effect of stress and temperature on the creep and rupture behavior of a 1.25 Pct chromium—0.5 Pct molybdenum steel. Metall. Trans. A 1977, 8, 877–884. [Google Scholar] [CrossRef]
- Mohapatra, J.N.; Panda, A.K.; Gunjan, M.K.; Bandyopadhyay, N.R.; Mitra, A.; Ghosh, R.N. Ageing behavior study of 5Cr–0.5Mo steel by magnetic Barkhausen emissions and magnetic hysteresis loop techniques. NDT Int. 2007, 40, 173–178. [Google Scholar] [CrossRef]
- Das, G.; Rao, V.; Joarder, A.; Mohanty, O.N.; Murthy, S.G.N.; Mitra, A. Magnetic characterization of 5Cr-0.5Mo steel used in process heater tubes. J. Phys. D Appl. Phys. 1995, 28, 2229. [Google Scholar] [CrossRef]
- Hamzah, M.Z.; Yeo, W.H.; Fry, A.T.; Inayat-Hussain, J.I.; Ramesh, S.; Purbolaksono, J. Estimation of oxide scale growth and temperature increase of high (9–12%) chromium martensitic steels of superheater tubes. Eng. Fail. Anal. 2013, 35, 380–386. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Tiwari, S.; Panigrahi, B.B.; Seol, J.B.; Reddy, N.S. Neural Network-Based Modeling of the Interplay between Composition, Service Temperature, and Thermal Conductivity in Steels for Engineering Applications. Int. J. Thermophys. 2024, 45, 137. [Google Scholar] [CrossRef]
- Guo, S.; Yu, J.; Liu, X.; Wang, C.; Jiang, Q. A predicting model for properties of steel using the industrial big data based on machine learning. Comput. Mater. Sci. 2019, 160, 95–104. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zuo, X.; Chen, N.; Rong, Y. An optimized machine-learning model for mechanical properties prediction and domain knowledge clarification in quenched and tempered steels. J. Mater. Res. Technol. 2023, 24, 3352–3362. [Google Scholar] [CrossRef]
- Gao, X.-Y.; Fan, W.-B.; Xing, L.; Tan, H.-J.; Yuan, X.-M.; Wang, H.-Y. Construction of a prediction model for properties of wear-resistant steel using industrial data based on machine learning approach. J. Iron Steel Res. Int. 2024. [Google Scholar] [CrossRef]
- Wang, X.-S.; Maurya, A.K.; Ishtiaq, M.; Kang, S.-G.; Reddy, N.G.S. Knowledge Discovery in Predicting Martensite Start Temperature of Medium-Carbon Steels by Artificial Neural Networks. Algorithms 2025, 18, 116. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Tiwari, S.; Nagamani, M.; Kang, S.-G.; Reddy, N.G.S. Data-Driven ANN-Based Predictive Modeling of Mechanical Properties of 5Cr-0.5Mo Steel: Impact of Composition and Service Temperature. Crystals 2025, 15, 213. [Google Scholar] [CrossRef]
- Zhang, X.-C.; Gong, J.-G.; Xuan, F.-Z. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions. Int. J. Fatigue 2021, 148, 106236. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, X.; Kang, Z.; Ye, F.; Chen, Y.; Zhou, D.; Zhang, X.; Gong, J. Creep lifetime prediction of 9% Cr martensitic heat-resistant steel based on ensemble learning method. J. Mater. Res. Technol. 2022, 21, 4745–4760. [Google Scholar] [CrossRef]
- Xiang, S.; Chen, X.; Fan, Z.; Chen, T.; Lian, X. A deep learning-aided prediction approach for creep rupture time of Fe–Cr–Ni heat-resistant alloys by integrating textual and visual features. J. Mater. Res. Technol. 2022, 18, 268–281. [Google Scholar] [CrossRef]
- Wang, C.; Wei, X.; Ren, D.; Wang, X.; Xu, W. High-throughput map design of creep life in low-alloy steels by integrating machine learning with a genetic algorithm. Mater. Des. 2022, 213, 110326. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 43, 1189–1232. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1998; Volume 326. [Google Scholar]
- Grosan, C.; Abraham, A. Artificial Neural Networks. In Intelligent Systems: A Modern Approach; Grosan, C., Abraham, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 281–323. [Google Scholar]
- Schapire, R.E. The Boosting Approach to Machine Learning: An Overview. In Nonlinear Estimation and Classification; Denison, D.D., Hansen, M.H., Holmes, C.C., Mallick, B., Yu, B., Eds.; Springer: New York, NY, USA, 2003; pp. 149–171. [Google Scholar]
- Lee, S.; Park, J.; Kim, N.; Lee, T.; Quagliato, L. Extreme gradient boosting-inspired process optimization algorithm for manufacturing engineering applications. Mater. Des. 2023, 226, 111625. [Google Scholar] [CrossRef]
- Soleimani, M.; Kalhor, A.; Mirzadeh, H. Transformation-induced plasticity (TRIP) in advanced steels: A review. Mater. Sci. Eng. A 2020, 795, 140023. [Google Scholar] [CrossRef]
- Zhao, L.; Wei, S.; Gao, D.; Lu, S. Effect of Carbon Content on the Creep Rupture Properties and Microstructure of 316H Weld Metals. Acta Metall. Sin. (Engl. Lett.) 2021, 34, 986–996. [Google Scholar] [CrossRef]
- Mitsuhara, M.; Yamasaki, S.; Miake, M.; Nakashima, H.; Nishida, M.; Kusumoto, J.; Kanaya, A. Creep strengthening by lath boundaries in 9Cr ferritic heat-resistant steel. Philos. Mag. Lett. 2016, 96, 76–83. [Google Scholar] [CrossRef]
- Dudko, V.; Belyakov, A.; Kaibyshev, R. Evolution of Lath Substructure and Internal Stresses in a 9% Cr Steel during Creep. ISIJ Int. 2017, 57, 540–549. [Google Scholar] [CrossRef]
- Semba, H.; Abe, F. Alloy design and creep strength of advanced 9%Cr USC boiler steels containing high concentration of boron. Energy Mater. 2006, 1, 238–244. [Google Scholar] [CrossRef]
- Kalandyk, B.; Zapała, R.; Starowicz, M. The Effect of Si and Mn on Microstructure and Selected Properties of Cr-Ni Stainless Steels. Arch. Foundry Eng. 2017, 17, 43. [Google Scholar] [CrossRef]
- Lu, C.; Yi, H.; Chen, M.; Xu, Y.; Wang, M.; Hao, X.; Liang, T.; Ma, Y. Effects of Si on the stress rupture life and microstructure of a novel austenitic stainless steel. J. Mater. Res. Technol. 2023, 25, 3408–3424. [Google Scholar] [CrossRef]
- Pilling, J.; Ridley, N.; Gooch, D.J. The effect of phosphorus on creep in 2.25%Cr-1% Mo steels. Acta Metall. 1982, 30, 1587–1595. [Google Scholar] [CrossRef]
- Latha, S.; Nandagopal, M.; Parameswaran, P.; Reddy, G.V.P. Effect of P and Si on creep induced precipitation in 20% CW Ti-modified 14Cr-15Ni stainless steel fast reactor clad. Mater. Sci. Eng. A 2019, 759, 736–744. [Google Scholar] [CrossRef]
Variable | Training Data | Testing Data | ||||||
---|---|---|---|---|---|---|---|---|
Max | Min. | Mean | Std. Dev. | Max. | Min. | Mean | Std. Dev. | |
C (wt.%) | 0.12 | 0.09 | 0.108 | 0.01 | 0.12 | 0.09 | 0.108 | 0.012 |
Si (wt.%) | 0.37 | 0.27 | 0.331 | 0.012 | 0.37 | 0.27 | 0.33 | 0.035 |
Mn (wt.%) | 0.56 | 0.44 | 0.499 | 0.035 | 0.56 | 0.44 | 0.499 | 0.048 |
P (wt.%) | 0.022 | 0.007 | 0.016 | 0.048 | 0.022 | 0.007 | 0.015 | 0.005 |
S (wt.%) | 0.01 | 0.005 | 0.007 | 0.005 | 0.012 | 0.005 | 0.007 | 0.002 |
Ni (wt.%) | 0.083 | 0.043 | 0.060 | 0.003 | 0.083 | 0.043 | 0.060 | 0.015 |
Cr (wt.%) | 5.02 | 4.61 | 4.84 | 0.016 | 5.02 | 4.61 | 4.84 | 0.150 |
Mo (wt.%) | 0.52 | 0.49 | 0.503 | 0.151 | 0.52 | 0.49 | 0.504 | 0.010 |
Cu (wt.%) | 0.13 | 0.05 | 0.072 | 0.031 | 0.13 | 0.05 | 0.073 | 0.030 |
Al (wt.%) | 0.008 | 0.004 | 0.006 | 0.001 | 0.008 | 0.004 | 0.006 | 0.001 |
N (wt.%) | 0.018 | 0.01 | 0.014 | 0.002 | 0.178 | 0.010 | 0.014 | 0.003 |
AGS (um) | 6.9 | 4.8 | 5.97 | 0.587 | 6.9 | 4.8 | 5.97 | 0.580 |
Hardness (HRB) | 90 | 75 | 81 | 5.620 | 90 | 75 | 81 | 5.588 |
NMI (wt.%) | 0.2 | 0.03 | 0.086 | 0.045 | 0.2 | 0.03 | 0.086 | 0.044 |
Temp. (°C) | 650 | 500 | 562 | 52.90 | 650 | 500 | 562 | 52.90 |
Stress (MPa) | 216 | 29 | 89 | 50 | 265 | 29 | 95 | 58 |
Creep Life | 5.12 | 1.37 | 3.64 | 0.99 | 5.06 | 1.58 | 3.62 | 1.00 |
Temperature | Time to Rupture | Difference |
---|---|---|
5Cr-0.5Mo steel at 500 °C | 5.576 | - |
5Cr-0.5Mo steel at 550 °C | 5.567 | −0.009 |
5Cr-0.5Mo steel at 600 °C | 5.024 | −0.543 |
5Cr-0.5Mo steel at 650 °C | 3.709 | −1.315 |
Experimental value 650 °C | 3.849 | |
Absolute Error in prediction | 3.849 − 3.709 = 0.14 | |
Percentage Relative Error | 0.14/3.849 * 100 = 3.64% |
Stress | Time to Rupture | Difference |
---|---|---|
5Cr-0.5Mo steel under 30 MPa | 5.576 | - |
5Cr-0.5Mo steel under 50 MPa | 5.575 | −0.001 |
5Cr-0.5Mo steel under 100 MPa | 4.656 | −0.919 |
5Cr-0.5Mo steel under 130 MPa | 3.789 | −0.867 |
5Cr-0.5Mo steel under 150 MPa | 3.204 | −0.585 |
5Cr-0.5Mo steel under 200 MPa | 1.913 | −1.291 |
5Cr-0.5Mo steel under 216 MPa | 1.706 | −0.207 |
Experimental value under 216 MPa | 1.737 | |
Absolute Error in Prediction | 1.737 − 1.706 = 0.031 | |
Percentage Relative Error | 0.031/1.737 * 100 = 1.78% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishtiaq, M.; Tariq, H.M.R.; Reddy, D.Y.C.; Kang, S.-G.; Reddy, N.G.S. Prediction of Creep Rupture Life of 5Cr-0.5Mo Steel Using Machine Learning Models. Metals 2025, 15, 288. https://doi.org/10.3390/met15030288
Ishtiaq M, Tariq HMR, Reddy DYC, Kang S-G, Reddy NGS. Prediction of Creep Rupture Life of 5Cr-0.5Mo Steel Using Machine Learning Models. Metals. 2025; 15(3):288. https://doi.org/10.3390/met15030288
Chicago/Turabian StyleIshtiaq, Muhammad, Hafiz Muhammad Rehan Tariq, Devarapalli Yuva Charan Reddy, Sung-Gyu Kang, and Nagireddy Gari Subba Reddy. 2025. "Prediction of Creep Rupture Life of 5Cr-0.5Mo Steel Using Machine Learning Models" Metals 15, no. 3: 288. https://doi.org/10.3390/met15030288
APA StyleIshtiaq, M., Tariq, H. M. R., Reddy, D. Y. C., Kang, S.-G., & Reddy, N. G. S. (2025). Prediction of Creep Rupture Life of 5Cr-0.5Mo Steel Using Machine Learning Models. Metals, 15(3), 288. https://doi.org/10.3390/met15030288