Advancement in Research on Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Lithiation Mechanism
3. Carbon Sources in Si/C Anode
3.1. Graphite
3.2. Graphene
3.3. Graphdiyne
3.4. Carbon Nanotubes
3.5. Carbon Fiber
3.6. MXene
3.7. Pitch
3.8. Heteroatom Polymer
3.9. Biomass Derived Nanostructured Carbon
3.10. Carbon-Containing Gas-Derived Carbon
3.10.1. Acetylene (C2H2)
3.10.2. Carbon Dioxide (CO2)
3.11. Metal–Organic Frameworks (MOFs)
3.12. g-C3N4
3.13. Future Outlook and Overview of Prospects
4. Conclusions and Future Prospective
4.1. Conclusions
4.2. Future Prospective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Dong, R.; Cheng, H.; Wang, L.; Tu, J.; Zhang, S.; Zhao, S.; Zhang, B.; Pan, H.; Lu, Y. 2D Layered Materials for Fast-Charging Lithium-Ion Battery Anodes. Small 2023, 19, e2301574. [Google Scholar] [CrossRef]
- Chen, H.; Ke, G.; Wu, X.; Li, W.; Mi, H.; Li, Y.; Sun, L.; Zhang, Q.; He, C.; Ren, X. Carbon nanotubes coupled with layered graphite to support SnTe nanodots as high-rate and ultra-stable lithium-ion battery anodes. Nanoscale 2021, 13, 3782–3789. [Google Scholar] [CrossRef] [PubMed]
- Muraleedharan, P.M.; Kalidas, N.; Zhao, X.; Lehto, V.P. Biomass-Based Silicon and Carbon for Lithium-Ion Battery Anodes. Front. Chem. 2022, 10, 882081. [Google Scholar] [CrossRef]
- Zhang, T.; Li, C.; Wang, F.; Noori, A.; Mousavi, M.F.; Xia, X.; Zhang, Y. Recent Advances in Carbon Anodes for Sodium-Ion Batteries. Chem. Rec. 2022, 22, e202200083. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Ji, S.; Cho, H.; Park, J. Highly Flexible Triboelectric Nanogenerator Using Porous Carbon Nanotube Composites. Polymers 2023, 15, 1135. [Google Scholar] [CrossRef]
- Shi, Q.; Cheng, Y.; Wang, J.; Zhou, J.; Ta, H.Q.; Lian, X.; Kurtyka, K.; Trzebicka, B.; Gemming, T.; Rummeli, M.H. Strain Regulating and Kinetics Accelerating of Micro-Sized Silicon Anodes via Dual-Size Hollow Graphitic Carbons Conductive Additives. Small 2023, 19, e2205284. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Feng, X.; Zheng, R.; Lv, Y.; Wang, Z.; Zhao, Y.; Shi, L.; Yuan, S. Binary Network of Conductive Elastic Polymer Constraining Nanosilicon for a High-Performance Lithium-Ion Battery. ACS Nano 2021, 15, 14570–14579. [Google Scholar] [CrossRef]
- Tzeng, Y.; Jhan, C.Y.; Wu, Y.C.; Chen, G.Y.; Chiu, K.M.; Guu, S.Y. High-ICE and High-Capacity Retention Silicon-Based Anode for Lithium-Ion Battery. Nanomaterials 2022, 12, 1387. [Google Scholar] [CrossRef]
- Branchi, M.; Maresca, G.; Tsurumaki, A.; Suzuki, N.; Croce, F.; Panero, S.; Voje, J.; Aihara, Y.; Navarra, M.A. Silicon-Based Composite Anodes for All-Solid-State Lithium-Ion Batteries Conceived by a Mixture Design Approach. ChemSusChem 2023, 16, e202202235. [Google Scholar] [CrossRef]
- Wu, S.C.; Lin, C.W.; Chang, P.C.; Yang, T.Y.; Tang, S.Y.; Wu, D.C.; Liao, C.R.; Wang, Y.C.; Lee, L.; Yu, Y.J.; et al. Ecofriendly Synthesis of Waste-Tire-Derived Graphite Nanoflakes by a Low-Temperature Electrochemical Graphitization Process toward a Silicon-Based Anode with a High-Performance Lithium-Ion Battery. ACS Appl. Mater. Interfaces 2023, 15, 15279–15289. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, C.; Liu, B.; Lu, K.; Jing, H.; Xia, X.; Xia, M.; Han, S.; Mandler, D.; Lei, W.; et al. Theoretical mechanisms and experimental validation of hard vs soft carbon coatings for enhanced silicon anode performance. Chem. Eng. J. 2025, 509, 161385. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, K.; Du, X.; Liu, G.; Du, Y.; Li, J. Wood-derived closed pore hard carbon encapsulated micro-sized silicon anode design for long-term practical lithium-ion battery. Chem. Eng. J. 2025, 508, 160846. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, R.; Wang, D.; Li, J.; Yao, X.; Chen, L.; Li, X.; Jiang, Z.; Liu, H.; Hou, Y.; et al. Orchestrating a Controllable Engineering of Dual-Model Carbon Structure in Si/C Anodes. Adv. Funct. Mater. 2025, 2423700. [Google Scholar] [CrossRef]
- Sun, Z.; Yin, Q.; Zhou, S.; Chen, H.; Wen, S.; Yang, H.; Wu, X.; Pan, J.; Han, J.; Yang, H.; et al. High-Performance Silicon Anodes Enabled by Multifunctional Ultrafine Silica Nanoparticle-Embedded Carbon Coatings for Lithium-Ion Batteries. Adv. Energy Mater. 2025, 2500189. [Google Scholar] [CrossRef]
- He, W.; Ji, H.; Platonova, M.; Chometon, R.; Dugas, R.; Tarascon, J.-M. Extending Si/C Anode Longevity through the Electrode Structure and Composition Design for All-Solid-State Batteries. ACS Appl. Mater. Interfaces 2025, 17, 12125–12135. [Google Scholar] [CrossRef]
- Yang, L.; Li, S.; Zhang, Y.; Feng, H.; Li, J.; Zhang, X.; Guan, H.; Kong, L.; Chen, Z. Multi-scale design of silicon/carbon composite anode materials for lithium-ion batteries: A review. J. Energy Chem. 2024, 97, 30–45. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, B.; Zhan, Z.; Hu, M.; Cai, F.; Świerczek, K.; Yang, K.; Ren, J.; Guo, Z.; Wang, Z. Boron-doped three-dimensional porous carbon framework/carbon shell encapsulated silicon composites for high-performance lithium-ion battery anodes. J. Colloid Interface Sci. 2024, 664, 790–800. [Google Scholar] [CrossRef]
- Yu, P.; Li, Z.; Zhang, D.; Xiong, Q.; Yu, J.; Zhi, C. Hierarchical Yolk-Shell Silicon/Carbon Anode Materials Enhanced by Vertical Graphene Sheets for Commercial Lithium-Ion Battery Applications. Adv. Funct. Mater. 2025, 35, 2413081. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, C.; Jiang, Y.; Shang, Z.; Zhu, J.; Zhang, J.; Jiang, M. Robust Nitrogen/Sulfur Co-Doped Carbon Frameworks as Multifunctional Coating Layer on Si Anodes Toward Superior Lithium Storage. Adv. Energy Mater. 2025, 15, 2403086. [Google Scholar] [CrossRef]
- Qin, G.; Jia, Z.; Sun, S.; Wu, H.; Hu, K.; Liu, D.; Gao, Y.; Chen, J. Carbon-Coated Si Nanosheets as Anode Materials for High-Performance Lithium-Ion Batteries. ACS Appl. Nano Mater. 2024, 7, 7595–7604. [Google Scholar] [CrossRef]
- Yu, W.-J.; Liu, C.; Hou, P.-X.; Zhang, L.; Shan, X.-Y.; Li, F.; Cheng, H.-M. Lithiation of Silicon Nanoparticles Confined in Carbon Nanotubes. ACS Nano 2015, 9, 5063–5071. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Li, Y.; Li, X.; Hu, S.; Zhang, X.; Xu, W.; Thevuthasan, S.; Baer, D.R.; Zhang, J.-G.; Liu, J.; et al. In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix. ACS Nano 2012, 6, 8439–8447. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429. [Google Scholar] [CrossRef]
- Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141. [Google Scholar] [CrossRef]
- Yu, P.; Li, Z.; Han, M.; Yu, J. Growth of Vertical Graphene Sheets on Silicon Nanoparticles Well-Dispersed on Graphite Particles for High-Performance Lithium-Ion Battery Anode. Small 2023, 20, 2307494. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Y.; Wang, D.; Zhang, R.; Fan, H.; Feng, L.; Wen, G.; Qin, L.-C. A silicon/carbon/reduced-graphene composite of honeycomb structure for high-performance lithium-ion batteries. J. Alloys Compd. 2023, 944, 169185. [Google Scholar] [CrossRef]
- Li, L.; Zuo, Z.; Shang, H.; Wang, F.; Li, Y. In-situ constructing 3D graphdiyne as all-carbon binder for high-performance silicon anode. Nano Energy 2018, 53, 135–143. [Google Scholar] [CrossRef]
- Luo, P.; Zheng, C.; He, J.; Tu, X.; Sun, W.; Pan, H.; Zhou, Y.; Rui, X.; Zhang, B.; Huang, K. Structural Engineering in Graphite-Based Metal-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2107277. [Google Scholar] [CrossRef]
- Chen, M.; Cao, W.; Wang, L.; Ma, X.; Han, K. Chessboard-Like Silicon/Graphite Anodes with High Cycling Stability toward Practical Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 775–783. [Google Scholar] [CrossRef]
- Müller, J.; Abdollahifar, M.; Doose, S.; Michalowski, P.; Wu, N.-L.; Kwade, A. Effects of carbon coating on calendered nano-silicon graphite composite anodes of LiB. J. Power Sources 2022, 548, 232000. [Google Scholar] [CrossRef]
- Sun, H.; Kong, X.; Park, H.; Liu, F.; Lee, Z.; Ding, F. Spiral Growth of Adlayer Graphene. Adv. Mater. 2022, 34, 2107587. [Google Scholar] [CrossRef]
- Xu, J.; Yin, Q.; Li, X.; Tan, X.; Liu, Q.; Lu, X.; Cao, B.; Yuan, X.; Li, Y.; Shen, L.; et al. Spheres of Graphene and Carbon Nanotubes Embedding Silicon as Mechanically Resilient Anodes for Lithium-Ion Batteries. Nano Lett. 2022, 22, 3054–3061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, Y.; Song, J.; Zhang, Y.; Shi, Q.; Wang, J.; Tian, F.; Yuan, S.; Su, Z.; Zhou, C.; et al. Functionalization-assistant ball milling towards Si/graphene anodes in high performance Li-ion batteries. Carbon 2021, 181, 300–309. [Google Scholar] [CrossRef]
- Fang, R.; Miao, C.; Mou, H.; Xiao, W. Facile synthesis of Si@TiO2@rGO composite with sandwich-like nanostructure as superior performance anodes for lithium ion batteries. J. Alloys Compd. 2020, 818, 152884. [Google Scholar] [CrossRef]
- Han, M.; Mu, Y.; Yuan, F.; Liang, J.; Jiang, T.; Bai, X.; Yu, J. Vertical graphene growth on uniformly dispersed sub-nanoscale SiOx/N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage. J. Mater. Chem. A 2020, 8, 3822–3833. [Google Scholar] [CrossRef]
- Li, Y.; Yan, K.; Lee, H.-W.; Lu, Z.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029. [Google Scholar] [CrossRef]
- Jia, Z.; Zuo, Z.; Yi, Y.; Liu, H.; Li, D.; Li, Y.; Li, Y. Low temperature, atmospheric pressure for synthesis of a new carbon Ene-yne and application in Li storage. Nano Energy 2017, 33, 343–349. [Google Scholar] [CrossRef]
- Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Synthesis and Properties of 2D Carbon—Graphdiyne. Acc. Chem. Res. 2017, 50, 2470–2478. [Google Scholar] [CrossRef]
- Nazarian-Samani, M.; Nazarian-Samani, M.; Haghighat-Shishavan, S.; Kim, K.-B. Efficient stress alleviation and interface regulation in Cu4SiP8-CNT hybrid for ultra-durable Li and Na storage. Nano Energy 2021, 86, 106134. [Google Scholar] [CrossRef]
- Fan, X.; Cai, T.; Wang, S.; Yang, Z.; Zhang, W. Carbon Nanotube-Reinforced Dual Carbon Stress-Buffering for Highly Stable Silicon Anode Material in Lithium-Ion Battery. Small 2023, 19, 2300431. [Google Scholar] [CrossRef]
- Li, H.; Yao, B.; Li, M.; Zou, X.; Duan, R.; Li, H.; Jiang, Q.; Cao, G.; Li, J.; Yan, H.; et al. Three-Dimensional Carbon Nanotubes Buffering Interfacial Stress of the Silicon/Carbon Anodes for Long-Cycle Lithium Storage. ACS Appl. Mater. Interfaces 2024, 16, 53665–53674. [Google Scholar] [PubMed]
- Pei, Y.; Wang, Y.; Chang, A.-Y.; Liao, Y.; Zhang, S.; Wen, X.; Wang, S. Nanofiber-in-microfiber carbon/silicon composite anode with high silicon content for lithium-ion batteries. Carbon 2023, 203, 436–444. [Google Scholar] [CrossRef]
- Chen, S.; Qiu, L.; Cheng, H.-M. Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices. Chem. Rev. 2020, 120, 2811–2878. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-W.; Shim, H.-W.; Kim, J.-C.; Kim, D.-W. Uniform Si nanoparticle-embedded nitrogen-doped carbon nanofiber electrodes for lithium ion batteries. J. Alloys Compd. 2017, 728, 490–496. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, X.; Dou, H.; Wei, J.; Sun, Z.; He, Y.-S.; Dong, Q.; Xu, H.; Yang, X. MXene Frameworks Promote the Growth and Stability of LiF-Rich Solid–Electrolyte Interphases on Silicon Nanoparticle Bundles. ACS Appl. Mater. Interfaces 2020, 12, 18541–18550. [Google Scholar] [CrossRef]
- Li, X.; Huang, Z.; Shuck, C.E.; Liang, G.; Gogotsi, Y.; Zhi, C. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 2022, 6, 389–404. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Zhang, Y.; Wei, C.; Tan, L.; Zhang, C.; Cui, N.; Xiong, S.; Feng, J.; Qian, Y. Two-Dimensional Silicon/Carbon from Commercial Alloy and CO2 for Lithium Storage and Flexible Ti3C2Tx MXene-Based Lithium–Metal Batteries. ACS Nano 2020, 14, 17574–17588. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, Y.; Cheng, Z.; Wang, X.; Huang, N.; Zhang, H. Ti3C2Tx MXene wrapped, carbon-coated porous Si sheets for improved lithium storage performance. Chin. Chem. Lett. 2024, 35, 108923. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, J.; Liu, J.; Feng, S.; Li, C.; Marsili, E.; Zhang, X. Silicon Nanospheres Supported on Conductive MXene Nanosheets as Anodes for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 6, 160–169. [Google Scholar] [CrossRef]
- Choi, S.-H.; Nam, G.; Chae, S.; Kim, D.; Kim, N.; Kim, W.S.; Ma, J.; Sung, J.; Han, S.M.; Ko, M.; et al. Robust Pitch on Silicon Nanolayer–Embedded Graphite for Suppressing Undesirable Volume Expansion. Adv. Energy Mater. 2019, 9, 1803121. [Google Scholar] [CrossRef]
- Zhang, Z.; Xi, F.; Ma, Q.; Wan, X.; Li, S.; Ma, W.; Chen, X.; Chen, Z.; Deng, R.; Ji, J.; et al. A nanosilver-actuated high-performance porous silicon anode from recycling of silicon waste. Mater. Today Nano 2022, 17, 100162. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, W.; Wang, D.; Wang, J.; Wang, C.; Xiong, Z.; Chen, F.-R.; Dong, H.; Xu, B.; Yan, X. Facile preparation of silicon/carbon composite with porous architecture for advanced lithium-ion battery anode. J. Electroanal. Chem. 2023, 937, 117427. [Google Scholar] [CrossRef]
- Nyamtara, K.J.; Song, J.K.; Karima, N.C.; Kim, S.H.; Nguyen, M.C.; Duong, T.P.M.; Lee, K.J.; Ahn, W. Two step pyrolysis synthesis method of graphite-enhanced Nano-Si/Pitch composite as long cycle life anode for lithium-ion batteries. J. Alloys Compd. 2024, 976, 173229. [Google Scholar] [CrossRef]
- Shao, D.; Tang, D.; Yang, J.; Li, Y.; Zhang, L. Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries. J. Power Sources 2015, 297, 344–350. [Google Scholar] [CrossRef]
- Cao, J.; Gao, J.; Wang, K.; Wu, Z.; Zhu, X.; Li, H.; Ling, M.; Liang, C.; Chen, J. Constructing globally consecutive 3D conductive network using P-doped biochar cotton fiber for superior performance of silicon-based anodes. J. Mater. Sci. Technol. 2024, 173, 181–191. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, X.; Sun, J.; Ban, B.; Li, J.; Chen, J. A surface-engineering-assisted method to synthesize recycled silicon-based anodes with a uniform carbon shell-protective layer for lithium-ion batteries. J. Colloid Interface Sci. 2021, 588, 737–748. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, K.; Lu, L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef]
- Zhou, R.; Guo, H.; Yang, Y.; Wang, Z.; Li, X.; Zhou, Y. N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries. J. Alloys Compd. 2016, 689, 130–137. [Google Scholar] [CrossRef]
- Tang, X.; Liu, D.; Wang, Y.-J.; Cui, L.; Ignaszak, A.; Yu, Y.; Zhang, J. Research advances in biomass-derived nanostructured carbons and their composite materials for electrochemical energy technologies. Prog. Mater. Sci. 2021, 118, 100770. [Google Scholar] [CrossRef]
- Wang, F.; Ouyang, D.; Zhou, Z.; Page, S.J.; Liu, D.; Zhao, X. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 2021, 57, 247–280. [Google Scholar] [CrossRef]
- Lin, L.; Deng, B.; Sun, J.; Peng, H.; Liu, Z. Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. Chem. Rev. 2018, 118, 9281–9343. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Liu, S.; Chen, J.; Yu, Y.; Shang, Q.; Fakudze, S.; Liu, C.; Zhou, P.; Chu, Q. One-step synthesis of interface-coupled Si@SiOX@C from whole rice-husks for high-performance lithium storage. Electrochim. Acta 2022, 402, 139556. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Y.; Duan, J.; Xiao, P.; Zhou, P.; Pang, L.; Li, Y. Multi-functional double carbon shells coated boron-doped porous Si as anode materials for high-performance lithium-ion batteries. Electrochim. Acta 2023, 462, 142712. [Google Scholar] [CrossRef]
- Li, J.; Rui, B.; Zhao, J.; He, R.; Liu, S.; Shi, W.; Wang, X.; Chang, L.; Cheng, Y.; Nie, P. Silicon particles confined in carbon nanotubes anode materials by green utilization of carbon dioxide in lithium-ion battery. J. Power Sources 2024, 597, 234131. [Google Scholar] [CrossRef]
- Mateev, V.; Ivanov, G.; Marinova, I. Modeling of Thermally Activated Fe2O3/Li2CO3 Electrochemical Cell. In Proceedings of the 2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, 1–4 June 2022; pp. 1–4. [Google Scholar]
- Chen, M.; Duan, P.; Zhong, Y.; Wu, Z.; Zhang, Z.; Wang, Y.; Guo, X.; Wang, X. Constructing a Sheet-Stacked Si/C Composite by Recycling Photovoltaic Si Waste for Li-Ion Batteries. Ind. Eng. Chem. Res. 2022, 61, 2809–2816. [Google Scholar] [CrossRef]
- Sui, X.; Huang, X.; Pu, H.; Wang, Y.; Chen, J. Tailoring MOF-derived porous carbon nanorods confined red phosphorous for superior potassium-ion storage. Nano Energy 2021, 83, 105797. [Google Scholar] [CrossRef]
- Wang, K.; Pei, S.; He, Z.; Huang, L.-a.; Zhu, S.; Guo, J.; Shao, H.; Wang, J. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes. Chem. Eng. J. 2019, 356, 272–281. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Yu, J.; Yuan, M.; Tan, Q.; Zhong, Z.; Su, F. High-performance Si-Containing anode materials in lithium-ion batteries: A superstructure of Si@Co–NC composite works effectively. Green Energy Environ. 2022, 7, 116–129. [Google Scholar] [CrossRef]
- Niu, X.; Wang, C.; Zhang, W.; Wang, D.; Shi, H.; Yu, L.; Wang, C.; Xiong, Z.; Ji, Z.; Gao, Y.; et al. A bimetallic ZIFs-triggered hierarchical carbon structure for stabilized silicon anode. Electrochim. Acta 2022, 403, 139671. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Ma, T.; Zhang, Y.; Huang, H. 2D Graphitic Carbon Nitride for Energy Conversion and Storage. Adv. Funct. Mater. 2021, 31, 2102540. [Google Scholar] [CrossRef]
- Wan, L.; Tang, Y.; Chen, L.; Wang, K.; Zhang, J.; Gao, Y.; Lee, J.Y.; Lu, T.; Xu, X.; Li, J.; et al. In-situ construction of g-C3N4/2CTx hybrid for superior lithium storage with significantly improved Coulombic efficiency and cycling stability. Chem. Eng. J. 2021, 410, 128349. [Google Scholar] [CrossRef]
- Zhong, Y.; Yu, B.; Xu, L.; Huang, Y.; Zheng, Y.; Li, J.; Huang, Z. g-C3N4 integrated silicon nanoparticle composite for high-performance Li-ion battery anodes. J. Mater. Sci. 2024, 59, 19915–19933. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, D.; Yuan, R.; Li, X.; Li, J.; Jiang, Z.; Li, A.; Chen, X.; Song, H. Simple Construction of Multistage Stable Silicon–Graphite Hybrid Granules for Lithium-Ion Batteries. Small 2023, 19, 2207167. [Google Scholar] [CrossRef]
- Fang, Y.; Lu, D.; Xie, J.; Guo, H.; Tian, J.; Sun, X.; Wang, D. Silicon-graphite composite anode materials with assembly structure by boron oxide auxiliary for high-performance lithium-ion batteries. Electrochim. Acta 2025, 146075. [Google Scholar] [CrossRef]
- Shi, J.; Li, R.; Li, J.; Liu, G. Surface-modification-assisted synthesis of in-situ graphene-doped carbon substrate coated silicon nanoparticles for boosting lithium storage performance. Powder Technol. 2023, 430, 118988. [Google Scholar] [CrossRef]
- Guo, X.; Yang, Z.; Wang, W.; Zhang, Y.; Yu, N.; Lu, C. Silicon/carbon nanotubes anode for lithium-ion batteries: Synthesis, interface and electrochemical performance. Surf. Interfaces 2024, 48, 104223. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, N.; Lin, W.; Wang, H.; Li, J.; Ma, L.; Wang, X.; Zhang, D.; Cao, Z. Carbon-encapsulated silicon ordered nanofiber membranes as high-performance anode material for lithium-ion batteries. J. Alloys Compd. 2025, 1010, 177012. [Google Scholar] [CrossRef]
- Lin, J.; Wu, C.; Ling, W.; Liu, L.; Yang, X.; Zhou, N. Coil-like Si-based composites prepared by encapsulating self-healing liquid metal-coated nanosilicon via flexible MXene for high-performance lithium-ion battery anodes. J. Power Sources 2025, 629, 236067. [Google Scholar] [CrossRef]
- Huang, W.; Gao, J.; Miao, L.; Zhou, J.; Yang, G.; Liu, W.; Jiang, Y.; Qin, H.; Zhang, Z.; Lei, X.; et al. Si@Nitrogen-Doped Carbon Nanoparticles for Lithium-Ion Battery Anodes. ACS Appl. Nano Mater. 2024, 7, 10350–10360. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. One-Step, Vacuum-Assisted Construction of Micrometer-Sized Nanoporous Silicon Confined by Uniform Two-Dimensional N-Doped Carbon toward Advanced Li Ion and MXene-Based Li Metal Batteries. ACS Nano 2022, 16, 4560–4577. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.; Kim, N.; Ma, J.; Cho, J.; Ko, M. One-to-One Comparison of Graphite-Blended Negative Electrodes Using Silicon Nanolayer-Embedded Graphite versus Commercial Benchmarking Materials for High-Energy Lithium-Ion Batteries. Adv. Energy Mater. 2017, 7, 1700071. [Google Scholar] [CrossRef]
- Zhu, S.; Zhou, J.; Guan, Y.; Cai, W.; Zhao, Y.; Zhu, Y.; Zhu, L.; Zhu, Y.; Qian, Y. Hierarchical Graphene-Scaffolded Silicon/Graphite Composites as High Performance Anodes for Lithium-Ion Batteries. Small 2018, 14, 1802457. [Google Scholar] [CrossRef] [PubMed]
- Abouali, S.; Garakani, M.A.; Silvestri, L.; Venezia, E.; Marasco, L.; Brescia, R.; Ansaldo, A.; Serri, M.; Panda, J.K.; Pugliese, G.; et al. From scaled-up production of silicon-graphene nanocomposite to the realization of an ultra-stable full-cell Li-ion battery. 2D Mater. 2021, 8, 035014. [Google Scholar] [CrossRef]
Carbon SOURCE | Composition | Method | Capacity at 0.1 A g−1/mAh g−1 | Rate Capability/mAh g−1 | Cyclic Performance (cycles)/mAh g−1 | Reference |
---|---|---|---|---|---|---|
Graphite | VGS@Si/C/G | Thermal chemical vapor deposition | 1494.45 | ~200 at 20 A g−1 | 782.2 (1000) at 0.5 A g−1 | [25] |
Graphite | SGHGs | Wet granulation and carbonization | 604.4 | 309 at 2 A g−1 | 351 (1000) at 1 A g−1 | [75] |
Graphite | SiG@B2O3-C | High-speed fusion and low-temperature heating | 529.5 | 536.9 at 2 A g−1 | 529.5 (200) at 0.1 A g−1 | [76] |
Graphene | Si/C/rGO | Mechanical ball milling and self-assembly method | 2897 | 1350 at 5 A g−1 | 1004 (270) at 1 A g−1 | [26] |
Graphene | SiNPs@MC | Surface-modification-assisted synthesis method | 2513 | 1721 at 1 A g−1 | 2117.5 (200) at 0.2 A g−1 | [77] |
Graphdiyne | GDY-Si | Originally growth method | 2307 | 1152 at 4 A g−1 | 1250 (200) at 1 A g−1 | [27] |
CNTs | Si@C@CNTs | Hydrothermal synthesis | 1607 | 861 at 3 A g−1 | 610 (1000) at 1 A g−1 | [40] |
CNTs | Si/CNTs/G@C | Ball milling and spray drying | 1137, 87 | 523 at 2 A g−1 | 355 (1000) at 1 A g−1 | [41] |
CNTs | Si/CNTs | Magnesium thermal reduction method | 1100.2 | 797 at 2 A g−1 | 922.4 (200) at 0.2 A g−1 | [78] |
Carbon fibers | PVA/Si composite nanofibers | Electrospinning | ~1700 | ~700 at 2 A g−1 | ~900 (250) at 0.5 A g−1 | [42] |
Carbon fibers | Si@CNFs | Electrospinning | 1603.1 | 255 at 2 A g−1 | 658.1 (1000) at 1 A g−1 | [79] |
MXene | pSi@NC@TNSs | Magnesium thermal reduction and carbon coating | 1292.3 | 365.5 at 5 A g−1 | 925 (100) at 0.5 A g−1 | [49] |
MXene | Si NPs/MXene | Electrostatic assembly method | 2442.5 | 1701.1 at 1 A g−1 | 1917.9 (300) at 0.5 A g−1 | [50] |
MXene | MXene@Si@LM-SA | Ultrasonic and freeze-drying processes | 2240.2 | ~1000 at 4 A g−1 | 1082.9 (200) at 1 A g−1 | [80] |
Pitch | C@void/Si-G | In situ template method | 1373.3 | 248.9 at 2 A g−1 | 706.6 (500) at 0.5 A g−1 | [53] |
Pitch | Si@Pitch | two-step pyrolysis synthesis method | 1559 | 789 at 2 A g−1 | 1524 (200) at 0.5 A g−1 | [54] |
Heteroatom polymer | Si/S-CNW | Template polymerization | 1423 | 953 at 10 A g−1 | 1238 (400) at 0.2 A g−1 | [55] |
Heteroatom polymer | Si/WPU | Carbon layer coating | 1834.64 | 968.9 at 2 A g−1 | 945.63 (300) at 0.5 A g−1 | [81] |
Biomass derived nanostructured carbon | Si@P-doped carbonized cotton fiber | Chemical vapor deposition | 3408.2 | 1244.24 at 2 A g−1 | 1777.15 (150) at 0.3 A g−1 | [56] |
Biomass derived nanostructured carbon | Si@SiOx@C | One-step carbonization method | 694 | 220 at 2 A g−1 | 460 (1000) at 1 A g−1 | [63] |
Carbon-containing gas-derived carbon | B-PSi@doubleC | Chemical vapor deposition | 2142.5 | 575.4 at 5 A g−1 | 1105.8 (300) at 0.5 A g−1 | [64] |
Carbon-containing gas-derived carbon | Si@C | Chemical vapor deposition | 2302.5 | 714.6 at 5 A g−1 | 892.6 (180) at 0.5 A g−1 | [65] |
MOFs | PDA@CoZn-NC@Si | Solvothermal method | 2252 | 1037 at 2 A g−1 | 814 (400) at 0.5 A g−1 | [71] |
MOFs | Si@Co–NC | Solvothermal method | 830.9 | ~200 at 5 A g−1 | 191.4 (3000) at 1 A g−1 | [70] |
g-C3N4 | Si@g-C3N4/CNF | Electrospinning | 1340 | 827 at 3 A g−1 | 729 (1000) at 2 A g−1 | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, B.; Liao, L.; Shen, X.; Mei, Z.; Du, Q.; Liang, L.; Lei, B.; Du, J. Advancement in Research on Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries. Metals 2025, 15, 386. https://doi.org/10.3390/met15040386
Jin B, Liao L, Shen X, Mei Z, Du Q, Liang L, Lei B, Du J. Advancement in Research on Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries. Metals. 2025; 15(4):386. https://doi.org/10.3390/met15040386
Chicago/Turabian StyleJin, Binbin, Liwei Liao, Xinyi Shen, Zhe Mei, Qingcheng Du, Liying Liang, Bingxin Lei, and Jun Du. 2025. "Advancement in Research on Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries" Metals 15, no. 4: 386. https://doi.org/10.3390/met15040386
APA StyleJin, B., Liao, L., Shen, X., Mei, Z., Du, Q., Liang, L., Lei, B., & Du, J. (2025). Advancement in Research on Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries. Metals, 15(4), 386. https://doi.org/10.3390/met15040386