Prediction of Weld Geometry in Laser Overlap Welding of Low-Carbon Galvanized Steel
Abstract
:1. Introduction
2. 3D Numerical Modelling
3. Experimentation and 3D Model Validation
3.1. Experimentation
3.2. 3D Model Validation
4. Artificial Neural Network-Based Predictive Modelling
4.1. Modelling Conditions
- Depth of penetration (DOP);
- Weld bead width at the surface (WS);
- Weld bead width at the interface (WI).
- Laser power (P): 2000–3000 W;
- Welding speed (S): 40–70 mm/s;
- Laser beam diameter (D): 300–490 μm;
- Gap between sheets (G): 0.05–0.15 mm.
- Data normalization was performed to standardize input variables, ensuring uniform weighting of parameters;
- The dataset was split into 80% training and 20% validation to assess model performance;
- A six-fold cross-validation strategy was employed to minimize overfitting and improve robustness.
- Input layer: four neurons (one for each input parameter: P, S, D, G);
- Hidden layer: A single layer containing 2 × p + 1 neurons (p being the number of input variables), optimized to balance complexity and computational efficiency;
- Output layer: three neurons (one for each predicted weld characteristic: DOP, WS, WI).
4.2. Modeling Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oussaid, K.; El Ouafi, A.; Chebak, A. Experimental Investigation of Laser Welding Process in Overlap Joint Configuration. J. Mater. Sci. Chem. Eng. 2019, 7, 16–31. [Google Scholar] [CrossRef]
- Deepak, J.R.; Raja, V.K.B.; Srikanth, D.; Surendran, H.; Nickolas, M.M. Non-destructive testing (NDT) techniques for low carbon steel welded joints: A review and experimental study. Mater. Today Proc. 2021, 44, 3732–3737. [Google Scholar] [CrossRef]
- Hayat, Q.; Franciosa, P.; Gao, Y.; Ceglarek, D.; Davis, C. Investigating impact of zinc vapor jet on keyhole dynamics and liquid ejection from molten pool during remote laser welding of zinc-coated steel in zero-gap lap joint configuration. Procedia CIRP 2024, 124, 579–584. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, H.P.; Sun, Y.; Li, L.; Wu, Y.; Lu, F. The evaporation behavior of zinc and its effect on spattering in laser overlap welding of galvanized steels. J. Mater. Process Technol. 2022, 306, 117625. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.P.; Wang, Y.; Hao, Y.; Carlson, B.E.; Lu, F. Formation mechanism of liquid metal embrittlement in laser lap welding of zinc-coated GEN3 steels. Mater. Sci. Eng. A 2021, 800, 140229. [Google Scholar] [CrossRef]
- Zhang, M.-J.; Wang, Z.-J.; Liu, Z.-Q.; Xie, Z.-Z. Optimization of the Fiber Laser Welding of Galvanized Steel in a Lap Joint…: EBSCOhost. Available online: https://web.p.ebscohost.com/ehost/detail/detail?vid=0&sid=f928d09b-716c-4683-a3d3-f233818313fb%40redis&bdata=Jmxhbmc9ZnImc2l0ZT1laG9zdC1saXZlJnNjb3BlPXNpdGU%3d#db=a9h&AN=144819380 (accessed on 19 November 2024).
- Karganroudi, S.S.; Aminzadeh, A.; Kemda, V.B.F.; Barka, N. 3D hardness profile mapping and geometrical defect prediction of laser-welded galvanized steel blanks using wobbling technology: An experimental investigation. Int. J. Adv. Manuf. Technol. 2022, 120, 2229–2246. [Google Scholar] [CrossRef]
- Numerical and Experimental Studies on Spatter Behavior in the Gap-Free Remote Laser Welding of Zinc-Coated Steel—ProQuest. Available online: https://www.proquest.com/docview/2652591147?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 19 November 2024).
- Kalpana, V.; Sivamalar, P.; Deepa, K.; Avudaiappan, T.; Vetriselvi, T.; Rajendrakannammal, G. Deep learning based predictive model for laser overlap welding in low carbon Galvanized steel. Mater. Today Proc. 2022, 69, 1043–1047. [Google Scholar] [CrossRef]
- Dey, U.; Duggirala, A.; Paul, S.; Mitra, S. Prediction of Weld Geometry in Laser Welding by Numerical Simulation & Artificial Neural Networking. Adv. Mater. Process. Technol. 2024, 10, 2233–2250. [Google Scholar] [CrossRef]
- Chuang, T.C.; Lo, Y.L.; Tran, H.C.; Tsai, Y.A.; Chen, C.Y.; Chiu, C.P. Optimization of Butt-joint laser welding parameters for elimination of angular distortion using High-fidelity simulations and Machine learning. Opt. Laser Technol. 2023, 167, 109566. [Google Scholar] [CrossRef]
- Li, R.; Dong, M.; Gao, H. Prediction of Bead Geometry with Changing Welding Speed Using Artificial Neural Network. Materials 2021, 14, 1494. [Google Scholar] [CrossRef]
- Nikolić, V.; Milovančević, M.; Petković, D.; Jocić, D.; Savić, M. Parameters forecasting of laser welding by the artificial intelligence techniques. Facta Univ. Ser. Mech. Eng. 2018, 16, 193–201. [Google Scholar] [CrossRef]
- Ai, Y.; Lei, C.; Cheng, J.; Mei, J. Prediction of weld area based on image recognition and machine learning in laser oscillation welding of aluminum alloy. Opt. Lasers Eng. 2023, 160, 107258. [Google Scholar] [CrossRef]
- Tran, N.H.; Bui, V.H.; Hoang, V.T. Development of an Artificial Intelligence-Based System for Predicting Weld Bead Geometry. Appl. Sci. 2023, 13, 4232. [Google Scholar] [CrossRef]
- Katz, R.; Zak, A.; Shirizly, A. Research Article Effect of Laser Welding Parameters on Weld Bead Geometry. Res. J. Appl. Sci. Eng. Technol. 2018, 15, 118–123. [Google Scholar] [CrossRef]
- Ahmed, A.N.; Noor, C.W.M.; Allawi, M.F.; El-Shafie, A. RBF-NN-based model for prediction of weld bead geometry in Shielded Metal Arc Welding (SMAW). Neural Comput. Appl. 2018, 29, 889–899. [Google Scholar] [CrossRef]
- Kshirsagar, R.; Jones, S.; Lawrence, J.; Tabor, J. Prediction of Bead Geometry Using a Two-Stage SVM–ANN Algorithm for Automated Tungsten Inert Gas (TIG) Welds. J. Manuf. Mater. Process. 2019, 3, 39. [Google Scholar] [CrossRef]
- Karmuhilan, M.; Sood, A.K. Intelligent process model for bead geometry prediction in WAAM. Mater. Today Proc. 2018, 5, 24005–24013. [Google Scholar] [CrossRef]
- Yadav, J.; Paswan, M. Different methods for predicting and optimizing weld bead geometry with mathematical modeling and ANN technique. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 2761–2766. [Google Scholar] [CrossRef]
- Rodríguez-Gonzálvez, P.; Rodríguez-Martín, M. Weld Bead Detection Based on 3D Geometric Features and Machine Learning Approaches. IEEE Access 2019, 7, 14714–14727. [Google Scholar] [CrossRef]
- Oussaid, K.; El Ouafi, A. A Three-Dimensional Numerical Model for Predicting the Weld Bead Geometry Characteristics in Laser Overlap Welding of Low Carbon Galvanized Steel. J. Appl. Math. Phys. 2019, 7, 2169–2186. [Google Scholar] [CrossRef]
- Behúlová, M.; Babalová, E. Heat source models for numerical simulation of laser welding processes—A short review. J. Phys. Conf. Ser. 2024, 2712, 012018. [Google Scholar] [CrossRef]
- Oussaid, K.; El Ouafi, A. A Study on Prediction of Weld Geometry in Laser Overlap Welding of Low Carbon Galvanized Steel Using ANN-Based Models. J. Softw. Eng. Appl. 2019, 12, 509–523. [Google Scholar] [CrossRef]
Sheet Position | C | Mn | P | S | Si | Cu | Ni | Cr | Al | N |
---|---|---|---|---|---|---|---|---|---|---|
Upper Sheet | 0.05 | 0.24 | 0.009 | 0.013 | 0.007 | 0.029 | 0.012 | 0.037 | 0.04 | 0.0024 |
Lower Sheet | 0.09 | 0.35 | 0.005 | 0.01 | 0.02 | 0.05 | 0.04 | 0.06 | 0.03 | 0.0029 |
Parameter | R2 (%) | MAPE (%) | RMSE (%) |
---|---|---|---|
DOP | 95.3 | 6.2 | 2.9 |
WS | 97.1 | 2.8 | 1.5 |
WI | 92.0 | 6.9 | 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oussaid, K.; Omidi, N.; El Ouafi, A.; Barka, N. Prediction of Weld Geometry in Laser Overlap Welding of Low-Carbon Galvanized Steel. Metals 2025, 15, 447. https://doi.org/10.3390/met15040447
Oussaid K, Omidi N, El Ouafi A, Barka N. Prediction of Weld Geometry in Laser Overlap Welding of Low-Carbon Galvanized Steel. Metals. 2025; 15(4):447. https://doi.org/10.3390/met15040447
Chicago/Turabian StyleOussaid, Kamel, Narges Omidi, Abderrazak El Ouafi, and Noureddine Barka. 2025. "Prediction of Weld Geometry in Laser Overlap Welding of Low-Carbon Galvanized Steel" Metals 15, no. 4: 447. https://doi.org/10.3390/met15040447
APA StyleOussaid, K., Omidi, N., El Ouafi, A., & Barka, N. (2025). Prediction of Weld Geometry in Laser Overlap Welding of Low-Carbon Galvanized Steel. Metals, 15(4), 447. https://doi.org/10.3390/met15040447