Recent Advances in Enhancing Air Stability of Layered Oxide Cathodes for Sodium-Ion Batteries via High-Entropy Strategies
Abstract
:1. Introduction
2. Fundamentals of High-Entropy Materials
2.1. Definition of High Entropy
2.2. Four Core Effects
3. Progress in Research on the Air Stability of LTMO Under the High-Entropy Strategy
3.1. The Issue of Air Stability in LTMO
3.2. High-Entropy Cation Regulation Strategy
3.3. P2/O3 Dual-Phase Synergistic Structure
3.4. Fluoride Ion Doping
4. Summary and Outlook
- Employ advanced characterization techniques to elucidate the intrinsic failure mechanisms of high-entropy layered oxides in air. In general, the phase composition of high-entropy materials is identified by X-ray diffraction (XRD) or neutron powder diffraction (NPD), while elemental analysis relies on techniques such as scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS) or scanning transmission electron microscopy (STEM). However, these methods are insufficient for accurately tracking real-time material changes during air exposure. Future studies should leverage real-time techniques such as in situ XRD, in situ X-ray photoelectron spectroscopy (XPS), and in situ X-ray absorption spectroscopy (XAS) to monitor microstructural evolution, charge transfer dynamics, and compositional changes at surfaces and interfaces. These insights are critical for revealing key failure pathways and developing targeted stabilization strategies.
- Integrate machine learning and high-throughput screening to accelerate rational design and optimization of high-entropy oxide systems. A comprehensive understanding of the roles of individual elements and their synergistic effects is essential. Building a large-scale materials database that incorporates parameters such as electronegativity, ionic radius, and valence stability can facilitate the establishment of predictive models correlating material composition, structure, and performance. Combining first-principles calculations (DFT) with machine learning algorithms will significantly enhance the efficiency of screening new air-stable high-entropy oxides, enabling the rapid discovery of novel materials with outstanding comprehensive performance from an expanded chemical space.
- Further refine the P2/O3 dual-phase ratio and phase interface characteristics to optimize synergistic effects in cathode materials. Dual-phase systems can substantially enhance structural stability and electrochemical activity by rationally coordinating interlayer spacing, ion diffusion pathways, and interfacial stress. Future research should focus on interface engineering strategies, including dislocation regulation, crystal plane orientation control, and nanoscale structural optimization, to minimize interfacial energy, maximize ion migration rates, and further boost high-rate capability and long-term cycling stability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, X.; Ban, S.; Shi, X.; Li, P.; Li, Y.; Zhu, S.; Yang, K.; Bai, W.; Yang, C. Carbon and energy storage in salt caverns under the background of carbon neutralization in China. Energy 2023, 272, 127120. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, T.; Ali, M.; Meng, Y.; Jin, Y.; Cui, Y.; Chen, W. Rechargeable Batteries for Grid Scale Energy Storage. Chem. Rev. 2022, 122, 16610–16751. [Google Scholar] [CrossRef] [PubMed]
- Chayambuka, K.; Mulder, G.; Danilov, D.L.; Notten, P.H.L. Sodium-Ion Battery Materials and Electrochemical Properties Reviewed. Adv. Energy Mater. 2018, 8, 1800079. [Google Scholar] [CrossRef]
- Song, J.; Wang, H.; Zuo, Y.; Zhang, K.; Yang, T.; Yang, Y.; Gao, C.; Chen, T.; Feng, G.; Jiang, Z.; et al. Building Better Full Manganese-Based Cathode Materials for Next-Generation Lithium-Ion Batteries. Electrochem. Energy Rev. 2023, 6, 20. [Google Scholar] [CrossRef]
- Yang, L.; Yang, K.; Zheng, J.; Xu, K.; Amine, K.; Pan, F. Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 4667–4680. [Google Scholar] [CrossRef]
- Cheng, Z.; Du, T.; Gong, H.; Zhou, L. In-situ synthesis of Fe7S8 on metal sites of MOFs as high-capacity and fast-kinetics anodes for sodium ion batteries. J. Alloys Compd. 2023, 940, 168854. [Google Scholar] [CrossRef]
- Deng, J.; Luo, W.; Chou, S.; Liu, H.; Dou, S. Sodium-Ion Batteries: From Academic Research to Practical Commercialization. Adv. Energy Mater. 2018, 8, 1701428. [Google Scholar] [CrossRef]
- Wang, P.; You, Y.; Yin, Y.; Guo, Y. Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance. Adv. Energy Mater. 2018, 8, 1701912. [Google Scholar] [CrossRef]
- Liang, X.; Hwang, J.; Sun, Y. Practical Cathodes for Sodium-Ion Batteries: Who Will Take The Crown? Adv. Energy Mater. 2023, 13, 2301975. [Google Scholar] [CrossRef]
- Yang, J.; Lim, J.; Park, M.; Lee, G.; Lee, S.; Cho, M.; Kang, Y. Thermally Activated P2-O3 Mixed Layered Cathodes toward Synergistic Electrochemical Enhancement for Na Ion Batteries. Adv. Energy Mater. 2021, 11, 2102444. [Google Scholar] [CrossRef]
- Xu, W.; Dang, R.; Zhou, L.; Yang, Y.; Lin, T.; Guo, Q.; Xie, F.; Hu, Z.; Ding, F.; Liu, Y.; et al. Conversion of Surface Residual Alkali to Solid Electrolyte to Enable Na-Ion Full Cells with Robust Interfaces. Adv. Mater. 2023, 35, 2301314. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Xu, Z.; Yang, H.; Tian, K.; Wang, Z.; Zheng, R.; Sun, H.; Liu, Y.; Wang, D. Designing water/air-stable Co-free high-entropy oxide cathodes with suppressed irreversible phase transition for sodium-ion batteries. Appl. Surf. Sci. 2023, 636, 157856. [Google Scholar] [CrossRef]
- Zhang, Y.; Pei, Y.; Liu, W.; Zhang, S.; Xie, J.; Xia, J.; Nie, S.; Liu, L.; Wang, X. AlPO4-coated P2-type hexagonal Na0.7MnO2.05 as high stability cathode for sodium ion battery. Chem. Eng. J. 2020, 382, 122697. [Google Scholar] [CrossRef]
- Yu, F.; Du, L.; Zhang, G.; Su, F.; Wang, W.; Sun, S. Electrode Engineering by Atomic Layer Deposition for Sodium-Ion Batteries: From Traditional to Advanced Batteries. Adv. Funct. Mater. 2020, 30, 1906890. [Google Scholar] [CrossRef]
- Luo, Y.; Pan, Q.; Wei, H.; Huang, Y.; Tang, L.; Wang, Z.; He, Z.; Yan, C.; Mao, J.; Dai, K.; et al. Towards Ni-rich layered oxides cathodes with low Li/Ni intermixing by mild molten-salt ion exchange for lithium-ion batteries. Nano Energy 2022, 102, 107626. [Google Scholar] [CrossRef]
- Lun, Z.; Ouyang, B.; Kwon, D.-H.; Ha, Y.; Foley, E.E.; Huang, T.-Y.; Cai, Z.; Kim, H.; Balasubramanian, M.; Sun, Y.; et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 2021, 20, 214–221. [Google Scholar] [CrossRef]
- Zhao, C.; Ding, F.; Lu, Y.; Chen, L.; Hu, Y. High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 264–269. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Rost, C.M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E.C.; Hou, D.; Jones, J.L.; Curtarolo, S.; Maria, J.-P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485. [Google Scholar] [CrossRef]
- Yao, L.; Zou, P.; Wang, C.; Jiang, J.; Ma, L.; Tan, S.; Beyer, K.A.; Xu, F.; Hu, E.; Xin, H.L. High-Entropy and Superstructure-Stabilized Layered Oxide Cathodes for Sodium-Ion Batteries. Adv. Energy Mater. 2022, 12, 2201989. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Zhang, S.; Mei, Y.; Ni, L.; Gao, J.; Liu, H.; Hong, N.; Zhang, B.; Zhu, F.; et al. High-Entropy Na-Deficient Layered Oxides for Sodium-Ion Batteries. ACS Nano 2023, 17, 12530–12543. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Wang, Y.; Jiang, C.; Ding, X.; Xin, Y.; Zhou, Q.; Chen, B.; Liu, H.; Singh, P.; Wang, Q.; et al. A High-Entropy Intergrowth Layered-Oxide Cathode with Enhanced Stability for Sodium-Ion Batteries. ChemSusChem 2024, 17, e202400768. [Google Scholar] [CrossRef] [PubMed]
- Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, S.; Duan, C.; Mao, J.; Dong, Y.; Dong, K.; Wang, Z.; Luo, S.; Liu, Y.; Qi, X. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J. Alloys Compd. 2020, 844, 156158. [Google Scholar] [CrossRef]
- Dąbrowa, J.; Stygar, M.; Mikuła, A.; Knapik, A.; Mroczka, K.; Tejchman, W.; Danielewski, M.; Martin, M. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 2018, 216, 32–36. [Google Scholar] [CrossRef]
- Gimbel, S. It Ain’t Necessarily So: Ludwig Boltzmann’s Darwinian Notion of Entropy. Entropy 2024, 26, 238. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, C.; Yao, Z.; Wang, J.; Wu, F.; Kumar, S.G.H.; Ganapathy, S.; Eustace, S.; Bai, X.; Li, B.; et al. Entropy-Driven Liquid Electrolytes for Lithium Batteries. Adv. Mater. 2023, 35, 2210677. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S. High-Entropy Alloys. In High Entropy Alloys; Elsevier: Amsterdam, The Netherlands, 2014; pp. 13–35. ISBN 978-0-12-800251-3. [Google Scholar]
- Liu, N.; Zhao, X.; Qin, B.; Zhao, D.; Dong, H.; Qiu, M.; Wang, L. A high-performance Na-storage cathode enabled by layered P2-type KxMnO2 with enlarged interlayer spacing and fast diffusion channels for sodium-ion batteries. J. Mater. Chem. A 2022, 10, 25168–25177. [Google Scholar] [CrossRef]
- Walczak, K.; Plewa, A.; Ghica, C.; Zając, W.; Trenczek-Zając, A.; Zając, M.; Toboła, J.; Molenda, J. NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide—Experimental and theoretical evidence of high electrochemical performance in sodium batteries. Energy Storage Mater. 2022, 47, 500–514. [Google Scholar] [CrossRef]
- Cai, T.; Cai, M.; Mu, J.; Zhao, S.; Bi, H.; Zhao, W.; Dong, W.; Huang, F. High-Entropy Layered Oxide Cathode Enabling High-Rate for Solid-State Sodium-Ion Batteries. Nano-Micro Lett. 2024, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fu, H.; Huang, Y.; Huang, L.; Zheng, X.; Dai, Y.; Huang, Y.; Luo, W. Opportunities for High-Entropy Materials in Rechargeable Batteries. ACS Mater. Lett. 2021, 3, 160–170. [Google Scholar] [CrossRef]
- Toher, C.; Oses, C.; Hicks, D.; Curtarolo, S. Unavoidable disorder and entropy in multi-component systems. npj Comput. Mater. 2019, 5, 69. [Google Scholar] [CrossRef]
- Owen, L.R.; Jones, N.G. Lattice distortions in high-entropy alloys. J. Mater. Res. 2018, 33, 2954–2969. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M.R.; Bhattacharya, S.S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties. Adv. Mater. 2019, 31, 1806236. [Google Scholar] [CrossRef]
- Kubota, K.; Komaba, S. Review—Practical Issues and Future Perspective for Na-Ion Batteries. J. Electrochem. Soc. 2015, 162, A2538–A2550. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, P.; Yin, Y.; Zhu, Y.; Niu, Y.; Zhang, X.; Zhang, J.; Yu, X.; Guo, X.; Zhong, B.; et al. Exposing {010} Active Facets by Multiple-Layer Oriented Stacking Nanosheets for High-Performance Capacitive Sodium-Ion Oxide Cathode. Adv. Mater. 2018, 30, 1803765. [Google Scholar] [CrossRef]
- Zhang, T.; Ren, M.; Huang, Y.; Li, F.; Hua, W.; Indris, S.; Li, F. Negative Lattice Expansion in an O3-Type Transition-Metal Oxide Cathode for Highly Stable Sodium-Ion Batteries. Angew. Chem. 2024, 136, e202316949. [Google Scholar] [CrossRef]
- Ding, F.; Wang, H.; Zhang, Q.; Zheng, L.; Guo, H.; Yu, P.; Zhang, N.; Guo, Q.; Xie, F.; Dang, R.; et al. Tailoring Electronic Structure to Achieve Maximum Utilization of Transition Metal Redox for High-Entropy Na Layered Oxide Cathodes. J. Am. Chem. Soc. 2023, 145, 13592–13602. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, L.; Fu, X.; Zhang, S.; Kong, H.; Chen, H.; Fu, F. A Ni/Co-free high-entropy layered cathode with suppressed phase transition and near-zero strain for high-voltage sodium-ion batteries. Chem. Eng. J. 2024, 480, 148130. [Google Scholar] [CrossRef]
- Zhan, J.; Huang, J.; Li, Z.; Yuan, J.; Dou, S.-X.; Liu, H.-K.; Wu, C. Air-Stable High-Entropy Layered Oxide Cathode with Enhanced Cycling Stability for Sodium-Ion Batteries. Nano Lett. 2024, 24, 9793–9800. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Chakrabarty, S.; Akella, S.H.; Saha, A.; Mukherjee, A.; Schmerling, B.; Ejgenberg, M.; Sharma, R.; Noked, M. High-Entropy Co-Free O3-Type Layered Oxyfluoride: A Promising Air-Stable Cathode for Sodium-Ion Batteries. Adv. Mater. 2023, 35, 2304440. [Google Scholar] [CrossRef]
- Ma, S.; Zou, P.; Xin, H.L. Extending phase-variation voltage zones in P2-type sodium cathodes through high-entropy doping for enhanced cycling stability and rate capability. Mater. Today Energy 2023, 38, 101446. [Google Scholar] [CrossRef]
- Yue, J.-L.; Yin, W.-W.; Cao, M.-H.; Zulipiya, S.; Zhou, Y.-N.; Fu, Z.-W. A quinary layer transition metal oxide of NaNi1/4Co1/4Fe1/4Mn1/8Ti1/8O2 as a high-rate-capability and long-cycle-life cathode material for rechargeable sodium ion batteries. Chem. Commun. 2015, 51, 15712–15715. [Google Scholar] [CrossRef]
- Lin, C.-C.; Liu, H.-Y.; Kang, J.-W.; Yang, C.-C.; Li, C.-H.; Chen, H.-Y.T.; Huang, S.-C.; Ni, C.-S.; Chuang, Y.-C.; Chen, B.-H.; et al. In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries. Energy Storage Mater. 2022, 51, 159–171. [Google Scholar] [CrossRef]
- Zhou, P.; Che, Z.; Liu, J.; Zhou, J.; Wu, X.; Weng, J.; Zhao, J.; Cao, H.; Zhou, J.; Cheng, F. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 2023, 57, 618–627. [Google Scholar] [CrossRef]
- Nowak, M.; Walczak, K.; Milewska, A.; Płotek, J.; Budziak, A.; Molenda, J. Electrochemical performance of different high-entropy cathode materials for Na-ion batteries. J. Alloys Compd. 2023, 968, 172316. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Gao, R.; Sun, L.; Hu, Z.; Liu, X. Zr-doped P2-Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 as high-rate performance cathode material for sodium ion batteries. Electrochim. Acta 2017, 223, 92–99. [Google Scholar] [CrossRef]
- Ding, F.; Zhao, C.; Xiao, D.; Rong, X.; Wang, H.; Li, Y.; Yang, Y.; Lu, Y.; Hu, Y.-S. Using High-Entropy Configuration Strategy to Design Na-Ion Layered Oxide Cathodes with Superior Electrochemical Performance and Thermal Stability. J. Am. Chem. Soc. 2022, 144, 8286–8295. [Google Scholar] [CrossRef]
- Du, X.-Y.; Meng, Y.; Yuan, H.; Xiao, D. High-entropy substitution: A strategy for advanced sodium-ion cathodes with high structural stability and superior mechanical properties. Energy Storage Mater. 2023, 56, 132–140. [Google Scholar] [CrossRef]
- Graff, K.; Hou, D.; Gabriel, E.; Park, J.; Koisch, A.; Schrock, R.; Conrado, A.; Schwartz, D.; Gutierrez, A.; Johnson, C.S.; et al. Tailoring P2/P3-Intergrowth in Manganese-Based Layered Transition Metal Oxide Positive Electrodes via Sodium Content for Na-Ion Batteries. ChemElectroChem 2025, 12, e202400662. [Google Scholar] [CrossRef]
- Lavela, P.; Leyva, J.; Tirado, J.L. High-performance Ni-free sustainable cathode Na0.67 Mg0.05 Fe0.1 Mn0.85 O2 for sodium-ion batteries. ChemSusChem 2024, 17, e202301327. [Google Scholar] [CrossRef] [PubMed]
- Chaali, Y.; Dahbi, M.; Sabbar, E.; Zakaria, D. Comparative study of Na0.67Ni0.25Co0.17Mn0.58O2 P-Type cathode materials for sodium-ion batteries: Combustion synthesis and combined analysis of structural, electrical, and dielectric properties. Ceram. Int. 2023, 49, 33607–33617. [Google Scholar] [CrossRef]
- Mu, J.; Cai, T.; Dong, W.; Zhou, C.; Han, Z.; Huang, F. Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries. Chem. Eng. J. 2023, 471, 144403. [Google Scholar] [CrossRef]
- Li, R.; Qin, X.; Li, X.; Zhu, J.; Zheng, L.; Li, Z.; Zhou, W. High-Entropy and Multiphase Cathode Materials for Sodium-Ion Batteries. Adv. Energy Mater. 2024, 14, 2400127. [Google Scholar] [CrossRef]
- Cao, M.; Cui, M.; Gong, Y.; Guo, Z.; Le, S.; Wu, Y.; Lin, C.; Li, K.; Tian, J.; Qi, Y. Synthesis of F-doped high-entropy layered oxide as cathode material towards high-performance Na-ion batteries. Chem. Commun. 2025, 61, 4371–4374. [Google Scholar] [CrossRef]
Cathode | Voltage Range | Initial Capacity (mAh g−1) | Cycle Retention (%) | Rate Performance (mAh g−1) | Ref. | |
---|---|---|---|---|---|---|
NaNi1/4Co1/4Fe1/4Mn1/8Ti1/8O2 | 2.0~4.0 | 128 (2C) | 97.72 (100) | 38.6/60 C | [46] | |
Active elements | NaCu0.1Ni0.3Fe0.2Mn0.2Ti0.2O2 | 2.0~3.9 | 130 (0.1C) | 87 (100) | 85/5 C | [47] |
Na0.667Mn0.667Ni0.167Co0.117Ti0.01Mg0.01Cu0.01Mo0.01Nb0.01O2 | 1.5~4.5 | 169.8 (1C) | 76.4 (100) | 111/5 C | [45] | |
Na0.7Mn0.4Ni0.3Cu0.1Fe0.1Ti0.1O1.95F0.1 | 2.0~4.3 | 133.5 (1C) | 99.5 (500) | 97.6/10 C | [48] | |
NaMn0.2Fe0.2Co0.2Ni0.2Sn0.1Al0.05Mg0.05O2 | 1.5~4.2 | 152 (0.5C) | 71.1 (200) | 142/0.5 C | [49] | |
Inactive elements | Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 | 1.5~4.2 | 143 (0.1C) | 81 (100) | 22/10 C | [50] |
NaNi0.25Mg0.05Cu0.1Fe0.2Mn0.2Ti0.1Sn0.1O2 | 2.0~4.0 | 130.8 (1C) | 75 (500) | 91/1 C | [51] | |
NaNi0.12Cu0.12Mg0.12Fe0.15Co0.15Mn0.1Ti0.1Sn0.1Sb0.04O2 | 2.0~3.9 | 110 (3C) | 83 (500) | 89/3 C | [17] | |
Mobile cation | NaNi0.1Mn0.15Co0.2Cu0.1Fe0.1Li0.1Ti0.15Sn0.1O2 | 2.0~4.1 | 115 (1.6C) | 82.7 (1000) | 90/1.6 C | [52] |
Na0.95Li0.06Ni0.25Cu0.05Fe0.15Mn0.49O2 | 2.0~4.2 | 141.2 (8C) | 83.2 (500) | 85/20 C | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Z.; Du, T.; Cao, L.; Liu, Y.; Wang, H. Recent Advances in Enhancing Air Stability of Layered Oxide Cathodes for Sodium-Ion Batteries via High-Entropy Strategies. Metals 2025, 15, 646. https://doi.org/10.3390/met15060646
Cheng Z, Du T, Cao L, Liu Y, Wang H. Recent Advances in Enhancing Air Stability of Layered Oxide Cathodes for Sodium-Ion Batteries via High-Entropy Strategies. Metals. 2025; 15(6):646. https://doi.org/10.3390/met15060646
Chicago/Turabian StyleCheng, Zhenyu, Tao Du, Lei Cao, Yuxuan Liu, and Hao Wang. 2025. "Recent Advances in Enhancing Air Stability of Layered Oxide Cathodes for Sodium-Ion Batteries via High-Entropy Strategies" Metals 15, no. 6: 646. https://doi.org/10.3390/met15060646
APA StyleCheng, Z., Du, T., Cao, L., Liu, Y., & Wang, H. (2025). Recent Advances in Enhancing Air Stability of Layered Oxide Cathodes for Sodium-Ion Batteries via High-Entropy Strategies. Metals, 15(6), 646. https://doi.org/10.3390/met15060646