Evolution of Microstructure and Mechanical Properties of Steam Generator Material After Long-Term Operation in Nuclear Power Plant
Abstract
:1. Introduction
- long-term exposure of blocks of materials that are exposed to the same temperature load as real monitored NPPs, using a sample carrier,
2. Materials and Methods
2.1. Sampling from Operating Facilities
2.2. Small Punch Test Methods
2.3. Chemical Analysis
2.4. Microstructure Analysis
3. Results
3.1. Microstructure Evaluation
3.2. Analysis of the Chemical Composition
3.3. SPT Test and Evaluation of the Changes in Mechanical Properties Based on the Operation Period
4. Conclusions
- The steam generator steel did not show significant embrittlement characteristics after long-term operation. The measured values of the mechanical properties did not show significant changes. The presented data demonstrate a relatively stable state of mechanical properties, with negligible impact from radiation-induced embrittlement observed over 28 years of operational exposure. Under both conditions, i.e., room temperature and +270 °C, the mechanical strength properties exhibited an initial decline, followed by stabilization, with values oscillating around a consistent baseline. Only the tensile strength at room temperature showed considerable variation with years of operation.
- It was shown that after an initial increase in the DBTT observed during the first 6 years of operation, no further significant increase was detected over the subsequent 28 years. As expected, long-term operation increased the ductile-to-brittle transition temperature (DBTT) due to radiation-induced microstructural changes and thermal aging of precipitates, which restrained dislocation motion and reduced ductility.
- The microstructural analysis confirmed the phase stability of the 22K steel. No significant changes in microstructure were found between individual samples. The statistical analysis of secondary precipitated particles showed a slight increase in particle density between the initial state and the state after 16 years of operation. However, the monitored statistical parameters, especially the mean distance between particles, changed only minimally between the steels that had operated for 16 and 28 years. The differences found were only at the level of measurement uncertainty.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Nuclear Association. The Enduring Value of Nuclear Energy Assets; Report No. 2020/003; World Nuclear Association Publishing: London, UK, 2020; p. 12. [Google Scholar]
- Joint Research Centre. 1st Nuclear Knowledge Preservation a Consolidation (NKPaC) Workshop WWER-WS1; EUR 23718 EN; Office for Official Publications of the European Communities: Luxemburg, 2009. [Google Scholar]
- The Database on Nuclear Power Reactors. PRIS—Power Reactor Information System, IAEA Website. 2025. Available online: https://pris.iaea.org/pris/home.aspx (accessed on 10 April 2025).
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 63, 735–758. [Google Scholar] [CrossRef]
- Mansur, L.K.; Farrell, K. Mechanisms of radiation-induced degradation of reactor vessel materials. J. Nucl. Mater. 1997, 244, 212–218. [Google Scholar] [CrossRef]
- Murty, K. Materials Ageing and Degradation in Light Water Reactors; Woodhead Publishing: Philadelphia, PA, USA, 2013; pp. 335–340. [Google Scholar]
- Busby, J.T.; Nanstad, R.K.; Stoller, R.E.; Feng, Z.; Naus, D.J. Materials Degradation in Light Water Reactors: Life After 60. Materials Science and Technology Division Oak Ridge National Laboratory, USA. 2008. Available online: https://www.energy.gov/sites/prod/files/Materials_Degradation_in_Light_Water_Reactors_Life_After_60.pdf (accessed on 10 April 2025).
- Rempe, J.L.; Knudson, D.L.; Daw, J.E.; Crepeau, J.C. High Temperature Thermal and Structural Material Properties for Metals Used in LWR Vessels. In Proceedings of the International Conference on Advances in Nuclear Power Plants, Anaheim, CA, USA, 9–12 June 2008. [Google Scholar]
- Eiselt, C.C.; König, G.; Hein, H.; Selektor, M.; Widera, M. Investigation of Thermal Ageing in Long Term Operated RPV Materials. In Proceedings of the ASME 2015 Pressure Vessels and Piping, Boston, MA, USA, 19–23 July 2015. [Google Scholar]
- Lokhov, A.; Huerta, A.; Dufresne, L.; Giraud, A.; Osouf, N. The Economics of Long-Term Operation of Nuclear Power Plants; NEA-7054; OECD/NEA Publishing: Paris, France, 2012; Available online: https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/7054-long-term-operation-npps.pdf (accessed on 10 April 2025).
- Auerkari, P.; Salonen, J.; Holmström, S.; Juha Viuhko, J.; Lokkiluoto, A. Life in plant—Challenges and solutions. In Proceedings of the Baltica IX International Conference on Life Management and Maintenance for Power Plants, Helsinki, Finland, 11–13 June 2013. [Google Scholar]
- Soler, A.V. Long-Term Operation of Nuclear Power Plants and Decarbonisation Strategies; NEA-7054; OECD/NEA Publishing: Paris, France, 2021; Available online: https://www.oecd-nea.org/jcms/pl_60310/long-term-operation-of-nuclear-power-plants-and-decarbonisation-strategies?details=true (accessed on 13 April 2025).
- International Atomic Eenergy Agency. Ageing Management for Nuclear Power Plants; Safety Guide No. NS-G-2.12; International Atomic Eenergy Agency: Vienna, Austria, 2009. [Google Scholar]
- Katona, T.J. Extension of operational Life-Time of WWER-440/213 Type Units at Paks Nuclear Power Plant. Paper No. PVP2009-77513. In Proceedings of the ASME 2009 Pressure Vessels and Piping Conference, Prague, Czech Republic, 29–30 July 2009. [Google Scholar]
- IAEA-TECDOC-1668, Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: Steam Generators. International Atomic Eenergy Agency: Vienna, Austria, 2011. Available online: https://inis.iaea.org/records/6hj97-6pw37 (accessed on 13 April 2025).
- Orynyak, I.; Zarazovskii, M.; Borodii, M. A New Methodology for Structural Reliability Assessment of the Heat Exchanger Tubes of WWER Steam Generators. J. Pres. Ves. Techn. 2017, 139, 031208. [Google Scholar] [CrossRef]
- Kochmanski, P.; Fryska, S.; Kochmanska, A.E. Failure analysis of steam superheater boiler tube made of ASTM T22 steel. Engin. Fail. Anal. 2024, 162, 108366. [Google Scholar] [CrossRef]
- GOST 5520-79; Sheet Products of Carbon, Low Alloy and Alloy Steel for Boilers and Vessels Working Under Pressure. Standartinform: Moscow, Russia, 1980.
- SSamTM-2 Surface Sampling System, Operation Manual Rolls-Royce; Rolls-Royce Power Engineering: Derby, UK, 2005.
- Petzová, J.; Březina, M.; Baľák, M.; Dománková, M.; Kupča, Ľ. Application of Metallographic Methods for Thermal Ageing Evaluation on Samples from Primary Piping of NPP. Mater. Scien. For. 2017, 891, 60–66. [Google Scholar] [CrossRef]
- Březina, M. Evaluation of mechanical properties of primary circuit components using SPT technique. Paper No. PVP2013-97170. In Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, Paris, France, 14–18 July 2013. [Google Scholar]
- Petzova, J.; Adamech, M.; Slnek, D. Application of Small Punch Testing Methods for thermal ageing assessment at steam-generators materials from decommissioned V1 NPP to LTO support on VVER type units in Slovakia. Paper No. PVP2022-83875. In Proceedings of the ASME 2022 Pressure Vessels and Piping Conference, Las Vegas, NV, USA, 17–22 July 2022. [Google Scholar]
- Safety Guide: Evaluation of Mechanical Characteristics of Materials of the Classified Engineering-Technology Components by the SPT Method, The Nuclear Regulatory Authority of the Slovak Republic, II.9.2/2016. Available online: https://www.ujd.gov.sk/wp-content/uploads/2022/08/CNS_NS-SR_2022_EN.pdf (accessed on 15 April 2025).
- EN 10371:2021; Metallic Materials -Small Punch Test Method. European Committee for Standardization: Brussels, Belgium, 2021.
- Foulds, J.; Woytowitz, P.; Parnell, T.; Jewett, C. Fracture Toughness by Small Punch Testing. ASTM Int. J. Test. Eval. 1995, 23, 3–10. [Google Scholar] [CrossRef]
- Wang, Z.X.; Shi, H.J.; Lu, J.; Shi, P.; Ma, X. Small Punch Testing for Assessing the Fracture Properties of the Reactor Vessel Steel with Different Thicknesses. Nucl. Eng. Des. 2008, 238, 3186–3193. [Google Scholar] [CrossRef]
- Pauna, H.; Aula, M.; Willms, T.; Echterhof, T.; Huttula, M.; Fabritius, T. Optical emission spectroscopy as a method to improve the process automation of electric arc furnaces and ladle furnaces. IFAC-Pap. OnLine 2022, 55, 78–83. [Google Scholar] [CrossRef]
- Saxl, I. Stereology of Objects with Internal Structure, 1st ed.; Elsevier Science & Technology: Amsterdam, The Netherlands, 1998; pp. 112–167. [Google Scholar]
- Yassin, G.; Pönitz, E.; Huittinen, N.M.; Schild, D.; Konheiser, J.; Müller, K.; Barkleit, A. Phase Characterization of (Mn, S) Inclusions and Mo Precipitates in Reactor Pressure Vessel Steel from Greifswald Nuclear Power Plant. J. Nucl. Eng. 2025, 6, 12. [Google Scholar] [CrossRef]
- Fedotova, S.; Kuleshova, E. The Effect of Operational Factors on Phase Formation Patterns in the Light-Water Reactor Pressure Vessel Steels. Metals 2023, 13, 1586. [Google Scholar] [CrossRef]
- Gillemot, F. Review on Steel Enhancement for Nuclear RPVs. Metals 2021, 11, 2008. [Google Scholar] [CrossRef]
- Jie, Y.; Li, S.; Li, J.; Jun Li, J.; Gao, J.; Bu, H.; Qi, H.; Li, Z.; Li, M. Long-term thermal aging mechanism considering microstructural differences due to wall thickness effect in large forgings of 15Kh2NMFA-A steel for nuclear reactor pressure vessels. Mater. Character. 2025, 225, 115167. [Google Scholar]
- Wang, T.; Gao, J.; Li, S.; Li, J.; Li, J.; Bu, H.; Qi, H.; Li, Z.; Li, M. Microstructure evolution and mechanical properties degradation behavior of nuclear power pressure vessel steel induced by prolonged thermal aging. J. Mater. Res. Techn. 2025, 34, 2740–2753. [Google Scholar] [CrossRef]
- Li, M.; He, J.; Hu, C.; Li, S.; Yu, W.; Ti, W.; Wang, C.; Wang, X. Effect of pre-strain on thermal aging of austenitic stainless steel weld metal. Inter. J. Press. Ves. Pip. 2024, 212, 105320. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Z. Long term ageing effect on fracture toughness of the GTAW welded joints for nuclear power main pipelines. Inter. J. Press. Ves. Pip. 2020, 188, 104250. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, H.; Zhang, B.; Song, C.; Sha, G.; Wang, W.; Yang, Z.; Chen, H. Cr microalloying enables high thermal stability of interphase-precipitated alloy carbides in low carbon ferritic steels. Scrip. Mater. 2025, 261, 116621. [Google Scholar] [CrossRef]
- Sprouster, D.J.; Adam, B.; Koziol, A.; Rolly, L.; Huotilainen, C.; Tucker, J.D. Long-term thermal aging effects in ferritic-martensitic steel HT9. Mater. Charac. 2024, 217, 114418. [Google Scholar] [CrossRef]
- Oñoro, M.; de Castro, V.; Leguey, T.; Pöpperlová, J.; Huizenga, R.M.; Auger, M.A. Microstructural stability of secondary phases in an ODS ferritic steel after thermal aging at 873 K. Mater. Charac. 2024, 207, 113517. [Google Scholar] [CrossRef]
Steel | Chemical Composition (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
C | Si | Mn | Ni | S | P | Cr | Cu | |
GOST 5520-79 | 0.19–0.26 | 0.20–0.45 | 0.75–1.05 | 0.30–0.50 | max. 0.025 | max. 0.04 | max. 0.30 | max 0.30 |
T (°C) | RP0.2 (MPa) | Rm (MPa) | A (%) | Z (%) | KCU (J/cm2) |
---|---|---|---|---|---|
20 | 255–265 | 430–590 | 22 | 50 | min. 39 |
270 | min. 196 | min. 353 | min. 18 | min. 45 | - |
Sample | State of the Sample |
---|---|
A | Initial state |
B | 6 years of operation |
C | 16 years of operation |
D | 28 years of operation |
Sample | Test piece diameter (mm) | 8 ± 0.1 |
Test piece thickness (mm) | 0.5 ± 0.005 | |
min. test pieces/material | 3 pcs | |
Geometry | Punch tip diameter (mm) | 2.5 |
Receiving hole edge (mm) | R 0.2 | |
Testing conditions | Temperature (°C) | 23 ± 2 |
Moment (torque) (Nm) | 10 | |
Measured parameters | Force–deflection | |
Load rate (mm·m−1) | 0.5 |
Sample | D (10−9 m) | NV (1019 m−3) | L (10−7 m) |
---|---|---|---|
A | 232 ± 34 | 1.349 ± 0.277 | 3.863 ± 0.450 |
B | 261 ± 39 | 1.178 ± 0.387 | 3.563 ± 0.951 |
C | 215 ± 28 | 2.327 ± 0.503 | 2.716 ± 0.417 |
D | 227 ± 30 | 1.889 ± 0.351 | 3.096 ± 0.397 |
Sample | Chemical Composition (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
C | Si | Mn | Ni | S | P | Cr | Cu | |
A | 0.19–0.26 | 0.20–0.45 | 0.75–1.05 | 0.30–0.50 | max 0.025 | max 0.04 | max 0.30 | max 0.30 |
B | 0.22 ± 0.01 | 0.28 ± 0.01 | 0.91 ± 0.01 | 0.43 ± 0.01 | 0.0075 ± 0.0008 | <0.007 | 0.24 ± 0.01 | 0.053 ± 0.005 |
C | 0.24 ± 0.01 | 0.29 ± 0.02 | 0.92 ± 0.01 | 0.42 ± 0.01 | 0.0079 ± 0.0008 | 0.007 ± 0.001 | 0.27 ± 0.01 | 0.051 ± 0.003 |
D | 0.24 ± 0.01 | 0.31 ± 0.02 | 0.92 ± 0.01 | 0.42 ± 0.01 | 0.0082 ± 0.0008 | 0.009 ± 0.001 | 0.27 ± 0.01 | 0.053 ± 0.003 |
Sample | Temperature (°C) | Mechanical Properties Measured by SPT Test | |
---|---|---|---|
Rm (MPa) | Rp0.2 (MPa) | ||
A | 20 | 525 ± 5 | 342 ± 2 |
270 | 503 ± 5 | 277 ± 2 | |
B | 20 | 579 ± 2 | 379 ± 4 |
270 | 448 ± 1 | 259 ± 5 | |
C | 20 | 508 ± 2 | 370 ± 2 |
270 | 449 ± 1 | 268 ± 5 | |
D | 20 | 558 ± 2 | 370 ± 2 |
270 | 452 ± 1 | 272 ± 5 |
Sample | DDTT (°C) |
---|---|
A | - 29.2 |
B | - 6.2 |
C | - 2.4 |
D | - 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slnek, D.; Dománková, M.; Adamech, M.; Petzová, J.; Bártová, K.; Kudláč, M.; Gavalec, M. Evolution of Microstructure and Mechanical Properties of Steam Generator Material After Long-Term Operation in Nuclear Power Plant. Metals 2025, 15, 667. https://doi.org/10.3390/met15060667
Slnek D, Dománková M, Adamech M, Petzová J, Bártová K, Kudláč M, Gavalec M. Evolution of Microstructure and Mechanical Properties of Steam Generator Material After Long-Term Operation in Nuclear Power Plant. Metals. 2025; 15(6):667. https://doi.org/10.3390/met15060667
Chicago/Turabian StyleSlnek, David, Mária Dománková, Marek Adamech, Jana Petzová, Katarína Bártová, Marek Kudláč, and Matúš Gavalec. 2025. "Evolution of Microstructure and Mechanical Properties of Steam Generator Material After Long-Term Operation in Nuclear Power Plant" Metals 15, no. 6: 667. https://doi.org/10.3390/met15060667
APA StyleSlnek, D., Dománková, M., Adamech, M., Petzová, J., Bártová, K., Kudláč, M., & Gavalec, M. (2025). Evolution of Microstructure and Mechanical Properties of Steam Generator Material After Long-Term Operation in Nuclear Power Plant. Metals, 15(6), 667. https://doi.org/10.3390/met15060667