Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Constitutive Analysis
3.2. Microstructure Evolution
3.3. Hot Deformation Behavior of 316LN Stainless Steel
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, S.; Yang, B.; Zhang, M.; Wu, H.; Peng, J.; Gao, Y. Numerical simulation and experimental verification of microstructure evolution in large forged pipe used for AP1000 nuclear power plants. Ann. Nucl. Energ. 2016, 87, 176–185. [Google Scholar] [CrossRef]
- Suresh, K.; Rao, K.P.; Prasad, Y.V.R.K.; Hort, N.; Kainer, K.U. Study of hot forging behavior of as-cast Mg-3Al-1Zn-2Ca alloy towards optimization of its hot workability. Mater. Des. 2014, 57, 697–704. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Rao, K.P. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300–950 °C. Mater. Sci. Eng. A 2005, 391, 141–150. [Google Scholar] [CrossRef]
- Rao, K.P.; Prasad, Y.V.R.K.; Suresh, K. Materials modeling and simulation of isothermal forging of rolled AZ31B magnesium alloy: Anisotropy of flow. Mater. Des. 2011, 32, 2545–2553. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Rao, K.P. Materials modeling and finite element simulation of isothermal forging of electrolytic copper. Mater. Des. 2011, 32, 1851–1858. [Google Scholar] [CrossRef]
- Cram, D.G.; Zurob, H.S.; Brechet, Y.J.M.; Hutchinson, C.R. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation. Acta Metall. 2009, 57, 5218–5228. [Google Scholar] [CrossRef]
- Beltran, O.; Huang, K.; Logé, R.E. A mean field model of dynamic and post-dynamic recrystallization predicting kinetics, grain size and flow stress. Comp. Mater. Sci. 2015, 102, 293–303. [Google Scholar] [CrossRef]
- Madej, L.; Sitko, M.; Pietrzyk, M. Perceptive comparison of mean and full field dynamic recrystallization models. Arch. Civ. Mech. Eng. 2016, 16, 569–589. [Google Scholar] [CrossRef]
- Pan, P.L.; Zhong, Y.X. Research on deformation property of 316LN nuclear main pipe steel at elevated temperature. China Mech. Eng. 2012, 11, 1354–1359. [Google Scholar]
- Zhang, P.P.; Sui, D.S. Modeling of flow stress and dynamic recrystallization for 316LN steel during hot deformation. J. Taiyuan Univ. Sci. Technol. 2014, 1, 44–51. [Google Scholar]
- Bai, Y.Q.; Chen, M.M. Hot deformation and dynamic recrystallization on behaviors of 316LN. J. Taiyuan Univ. Sci. Technol. 2009, 5, 424–427. [Google Scholar]
- Zhang, R.H.; Wang, Z.H.; Shi, Z.P.; Wang, B.; Fu, W.T. Dynamic and post deformation recrystallization of nuclear-grade 316LN stainless steel. Strength. Mater. 2015, 47, 94–99. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Rao, K.P.; Gupta, M. Hot workability and deformation mechanisms in Mg/nano-Al2O3 composite. Compos. Sci. Technol. 2009, 69, 1070–1076. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Rao, K.P. Effect of homogenization on the hot deformation behavior of cast AZ31 magnesium alloy. Mater. Des. 2009, 30, 3723–3730. [Google Scholar] [CrossRef]
- Guo, B.; Ji, H.; Liu, X.; Gao, L.; Dong, R.; Jin, M. Research on Flow Stress During Hot Deformation Process and Processing Map for 316LN Austenitic Stainless Steel. J. Mater. Eng. Perform. 2011, 21, 1455–1461. [Google Scholar] [CrossRef]
- He, A.; Yang, X.; Xie, G.; Wang, X. Processing map and character of hot working of 316LN pipe during hot working process. J. Iron Steel Res. 2015, 27, 34–37. [Google Scholar]
- Guo, M.W.; Wang, Z.H.; Zhou, Z.A.; Sun, S.H.; Fu, W.T. Effect of Nitrogen Content on Hot Deformation Behavior and Grain Growth in Nuclear Grade 316LN Stainless Steel. Adv. Mater. Sci. Eng. 2015. [Google Scholar] [CrossRef]
- Liu, X.G.; Ji, H.P.; Guo, H.; Jin, M.; Guo, B.F.; Gao, L. Study on hot deformation behavior of 316LN austenitic stainless steel based on hot processing map. Mater. Sci. Technol. 2013, 29, 24–29. [Google Scholar] [CrossRef]
- Sun, C.Y.; Li, Y.M.; Xiang, Y.; Yang, J. Hot deformation behavior and hot processing maps of 316LN stainless steel. Rare Met. Mater. Eng. 2016, 45, 688–695. [Google Scholar]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar] [CrossRef]
- Yang, L.C.; Pan, Y.T.; Chen, I.G.; Lin, D.Y. Constitutive relationship modeling and characterization of flow behavior under hot working for Fe-Cr-Ni-W-Cu-Co super-austenitic stainless steel. Metals 2015, 5, 1717–1731. [Google Scholar] [CrossRef]
- Sellars, C.M.; McTegart, W.J. On the mechanism of hot deformation. Acta Metall. 1966, 14, 1136–1138. [Google Scholar] [CrossRef]
- Mecking, H.; Kocks, U.F. Kinetics of flow and strain-hardening. Acta Metall. 1981, 29, 1865–1875. [Google Scholar] [CrossRef]
- Ryan, N.D.; McQueen, H.J. Flow stress, dynamic restoration, strain hardening and ductility in hot working of 316 steel. J. Mater. Process. Technol. 1990, 21, 177–199. [Google Scholar] [CrossRef]
- Poliak, E.I.; Jonas, J.J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Metall. 1996, 44, 127–136. [Google Scholar] [CrossRef]
- Ji, H.P. Microstructure Prediction of 316LN Stainless Steel for Dynamic Recrystallization based on Cellular Automata Method. Ph.D. Thesis, Yanshan University, Qinhuangdao, China, December 2013. [Google Scholar]
- Liu, X.; Zhang, L.; Qi, R.; Chen, L.; Jin, M.; Guo, B. Prediction of Critical conditions for dynamic recrystallization in 316LN austenitic steel. J. Iron. Steel. Res. Int. 2016, 23, 238–243. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Rao, K.P. Hot Working Guide: A Compendium of Processing Maps, 2nd ed.; ASM International: Cleveland, OH, USA, 2015; p. 261. [Google Scholar]
- Avrami, M. Kinetics of phase change. I general theory. J. Chem. Phys. 1939, 7, 1103. [Google Scholar] [CrossRef]
- Venugopal, S.; Mannan, S.L.; Prasad, Y.V.R.K. Optimization of cold and warm workability in stainless steel type AISI 316L using instability maps. J. Nucl. Mater. 1995, 227, 1–10. [Google Scholar] [CrossRef]
- Venugopal, S.; Mannan, S.L.; Prasad, Y.V.R.K. Processing map for mechanical working of stainless steel type AISI 316 L. Scr. Metall. Mater. 1993, 28, 715–720. [Google Scholar] [CrossRef]
- Venugopal, S.; Sivaprasad, P.V.; Prasad, Y.V.R.K. Validation of processing maps for 304L stainless steel using hot forging, rolling and extrusion. J. Mater. Process. Technol. 1995, 59, 343–350. [Google Scholar] [CrossRef]
- Rao, K.P.; Prasad, Y.V.R.K.; Dzwonczyk, J.; Hort, N.; Kainer, K.U. Hot Deformation mechanisms in AZ31 magnesium alloy extruded at different temperatures: Impact of texture. Metals 2012, 2, 292–312. [Google Scholar] [CrossRef]
- Ziegler, H. Some extremum principles in irreversible thermodynamics, with application to continuum mechanics. Swiss Fed. Inst. Technol. 1962. [Google Scholar]
Component | C | Cr | Ni | Mo | Mn | P | S | Si | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|
wt. % | 0.017 | 17.03 | 12.71 | 2.53 | 1.29 | 0.020 | 0.001 | 0.34 | 0.12 | Balance |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Xiang, Y.; Zhou, Q.; Politis, D.J.; Sun, Z.; Wang, M. Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel. Metals 2016, 6, 152. https://doi.org/10.3390/met6070152
Sun C, Xiang Y, Zhou Q, Politis DJ, Sun Z, Wang M. Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel. Metals. 2016; 6(7):152. https://doi.org/10.3390/met6070152
Chicago/Turabian StyleSun, Chaoyang, Yu Xiang, Qingjun Zhou, Denis J. Politis, Zhihui Sun, and Mengqi Wang. 2016. "Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel" Metals 6, no. 7: 152. https://doi.org/10.3390/met6070152
APA StyleSun, C., Xiang, Y., Zhou, Q., Politis, D. J., Sun, Z., & Wang, M. (2016). Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel. Metals, 6(7), 152. https://doi.org/10.3390/met6070152