The Mechanism of Inhomogeneous Grain Refinement in a NiTiFe Shape Memory Alloy Subjected to Single-Pass Equal-Channel Angular Extrusion
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- (1)
- Single-pass ECAE performed at 400–500 °C is able to refine the grains of a NiTiFe SMA. However, the obtained microstructures present a high inhomogeneity, where the refined grains are mainly nucleated near the grain boundaries and a small fraction of them emerges in the grain interior. Furthermore, the size of the refined grains increases as ECAE temperature increases, which indicates that the higher deformation temperature is adverse to the refinement of ECAE.
- (2)
- The grain refinement of ECAE results from the transition of lower angle grain boundaries to higher ones, and a lower deformation temperature is able to induce more substructures during the ECAE of a NiTiFe SMA. The ECAE of NiTiFe SMAs is not suitable for being performed at temperatures above 500 °C due to its weak ability of grain refinement. It is the accumulation and rearrangement of GNDs as plastic strain increases that leads to the transition of lower angle subgrain boundaries. Higher angle subgrain boundaries are finally induced, and finer grains are formed.
- (3)
- Due to the limitation of slip systems, the mechanism of grain refinement in NiTiFe SMA subjected to single-pass ECAE is different from that in FCC and BCC crystals. Dislocation cells and shear bands are two transition microstructures of grain refinement during the ECAE of NiTiFe SMAs. The nucleation of the fine grains mainly occurs along the shear bands or the grain boundaries, which leads to the inhomogeneity of grain refinement.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tsuchiya, K.; Inuzuka, M.; Tomus, D.; Hosokawa, A.; Nakayama, H.; Morii, K.; Todaka, Y.; Umemoto, M. Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation. Mater. Sci. Eng. A 2006, 438–440, 643–648. [Google Scholar] [CrossRef]
- Khaleghi, F.; Khalil-Allafi, J.; Abbasi-Chianeh, V.; Noori, S. Effect of short-time annealing treatment on the superelastic behavior of cold drawn Ni-rich NiTi shape memory wires. J. Alloys Compd. 2013, 554, 32–38. [Google Scholar] [CrossRef]
- Peterlechner, M.; Waitz, T.; Karnthaler, H.P. Nanoscale amorphization of severely deformed NiTi shape memory alloys. Scr. Mater. 2009, 60, 1137–1140. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Hu, L.; Liang, Y. Deformation mechanism of NiTi shape memory alloy subjected to severeplastic deformation at low temperature. Mater. Sci. Eng. A 2013, 559, 607–614. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, Y.; Zhang, Y.; Tang, M.; Li, C. Equal channel angular extrusion of NiTi shape memory alloy tube. Trans. Nonferr. Met. Soc. China 2013, 23, 2021–2028. [Google Scholar] [CrossRef]
- Hu, T.; Chen, L.; Wu, S.L.; Chu, C.L.; Wang, L.M.; Yeung, K.W.K.; Chu, P.K. Graded phase structure in the surface layer of NiTi alloy processed by surface severe plastic deformation. Scr. Mater. 2011, 64, 1011–1014. [Google Scholar] [CrossRef]
- Li, S.; Beyerlein, I.J.; Necker, C.T. On the development of microstructure and texture heterogeneity in ECAE via route C. Acta Mater. 2006, 54, 1397–1408. [Google Scholar] [CrossRef]
- Su, C.W.; Lu, L.; Lai, M.O. A model for the grain refinement mechanism in equal channel angular pressing of Mg alloy from microstructural studies. Mater. Sci. Eng. A 2006, 434, 227–236. [Google Scholar] [CrossRef]
- Qarni, M.J.; Sivaswamy, G.; Rosochowski, A.; Boczkal, S. On the evolution of microstructure and texture in commercial purity titanium during multiple passes of incremental equal channel angular pressing (I-ECAP). Mater. Sci. Eng. A 2017, 699, 31–47. [Google Scholar] [CrossRef]
- Frint, S.; Hockauf, M.; Frint, P.; Wagner, M.F.X. Scaling up Segal’s principle of equal-channel angular pressing. Mater. Des. 2016, 97, 502–511. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Zhang, D. On the selection of outlet channel length and billet length in equal channelangular extrusion. Comput. Mater. Sci. 2010, 49, 293–298. [Google Scholar] [CrossRef]
- Cheng, W.; Tian, L.; Wang, H.; Bian, L.; Yu, H. Improved tensile properties of an equal channel angular pressed (ECAPed) Mg-8Sn-6Zn-2Al alloy by prior aging treatment. Mater. Sci. Eng. A 2017, 687, 148–154. [Google Scholar] [CrossRef]
- Hao, T.; Tang, H.; Luo, G.; Wang, X.; Liu, C.; Fang, Q. Enhancement effect of inter-pass annealing during equal channel angular pressing on grain refinement and ductility of 9Cr1Mo steel. Mater. Sci. Eng. A 2016, 667, 454–458. [Google Scholar] [CrossRef]
- Sitdikov, O.; Avtokratova, E.; Sakai, T. Microstructural and texture changes during equal channel angular pressing of an Al-Mg-Sc alloy. J. Alloys Compd. 2015, 648, 195–204. [Google Scholar] [CrossRef]
- Qarni, M.J.; Sivaswamy, G.; Rosochowski, A.; Boczkal, S. Effect of incremental equal channel angular pressing (I-ECAP) on the microstructural characteristics and mechanical behaviour of commercially pure titanium. Mater. Des. 2017, 122, 385–402. [Google Scholar] [CrossRef]
- Gholami, D.; Imantalab, O.; Naseri, M.; Vafaeian, S.; Fattah-alhosseini, A. Assessment of microstructural and electrochemical behavior of severely deformed pure copper through equal channel angular pressing. J. Alloys Compd. 2017, 723, 856–865. [Google Scholar] [CrossRef]
- Shahmir, H.; Nili-Ahmadabadi, M.; Mansouri-Arani, M.; Langdon, T.G. The processing of NiTi shape memory alloys by equal-channel angularpressing at room temperature. Mater. Sci. Eng. A 2013, 576, 178–184. [Google Scholar] [CrossRef]
- Shahmir, H.; Nili-Ahmadabadi, M.; Wang, C.T.; Jung, J.M.; Kim, H.S.; Langdon, T.G. Annealing behavior and shape memory effect in NiTi alloy processed by equal-channel angular pressing at room temperature. Mater. Sci. Eng. A 2015, 629, 16–22. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, B.; Tong, Y.; Tian, B.; Li, L.; Zheng, Y.; Gunderov, D.V.; Valiev, R.Z. Effect of annealing temperature on martensitic transformation of Ti49.2Ni50.8 alloy processed by equal channel angular pressing. Trans. Nonferr. Met. Soc. China 2016, 26, 448–455. [Google Scholar] [CrossRef]
- Kockar, B.; Karaman, I.; Kulkarni, A.; Chumlyakov, Y.; Kireeva, I.V. Effect of severe ausforming via equal channel angular extrusion on the shape memory response of a NiTi alloy. J. Nucl. Mater. 2007, 361, 298–305. [Google Scholar] [CrossRef]
- Song, J.; Wang, L.; Zhang, X.; Sun, X.; Jiang, H.; Fan, Z.; Xie, C.; Wu, M.H. Effects of second phases on mechanical properties and martensitic transformations of ECAPed TiNi and Ti-Mo based shape memory alloys. Trans. Nonferr. Met. Soc. China 2012, 22, 1839–1848. [Google Scholar] [CrossRef]
- Leitner, T.; Sabirov, I.; Pippan, R.; Hohenwarter, A. The effect of severe grain refinement on the damage tolerance of a superelastic NiTi shape memory alloy. J. Mech. Behav. Biomed. Mater. 2017, 71, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Kocich, R.; Szurman, I.; Kursa, M.; Fiala, J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A 2009, 512, 100–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Wang, S.; Sun, D.; Hu, L. Influence of partial staticrecrystallization on microstructures and mechanical properties of NiTiFe shape memory alloysubjected to severe plastic deformation. Mater. Res. Bull. 2017, 88, 226–233. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Wang, J.; Horita, Z.; Nemoto, M. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 1996, 35, 143–146. [Google Scholar] [CrossRef]
- Gall, K.; Dunn, M.L.; Liu, Y.; Labossiere, P.; Sehitoglu, H.; Chumlyakov, Y.I. Micro and macro deformation of single crystal NiTi. J. Eng. Mater. Technol. 2002, 124, 238–245. [Google Scholar] [CrossRef]
- Benafan, O.; Noebe, R.D.; Padula, S.A.; Garg, A.; Clausen, B.; Vogel, S.; Vaidyanathan, R. Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy. Int. J. Plast. 2013, 51, 103–121. [Google Scholar] [CrossRef]
- Ezaz, T.; Wang, J.; Sehitoglu, H.; Maier, H.J. Plastic deformation of NiTi shape memory alloys. Acta Mater. 2013, 61, 67–78. [Google Scholar] [CrossRef]
- Pelton, A.R.; Huang, G.H.; Moinec, P.; Sinclair, R. Effects of thermal cycling on microstructure and properties in Nitinol. Mater. Sci. Eng. A 2012, 532, 130–138. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jiang, S. The Mechanism of Inhomogeneous Grain Refinement in a NiTiFe Shape Memory Alloy Subjected to Single-Pass Equal-Channel Angular Extrusion. Metals 2017, 7, 400. https://doi.org/10.3390/met7100400
Zhang Y, Jiang S. The Mechanism of Inhomogeneous Grain Refinement in a NiTiFe Shape Memory Alloy Subjected to Single-Pass Equal-Channel Angular Extrusion. Metals. 2017; 7(10):400. https://doi.org/10.3390/met7100400
Chicago/Turabian StyleZhang, Yanqiu, and Shuyong Jiang. 2017. "The Mechanism of Inhomogeneous Grain Refinement in a NiTiFe Shape Memory Alloy Subjected to Single-Pass Equal-Channel Angular Extrusion" Metals 7, no. 10: 400. https://doi.org/10.3390/met7100400
APA StyleZhang, Y., & Jiang, S. (2017). The Mechanism of Inhomogeneous Grain Refinement in a NiTiFe Shape Memory Alloy Subjected to Single-Pass Equal-Channel Angular Extrusion. Metals, 7(10), 400. https://doi.org/10.3390/met7100400