Electropolymerisation of Aniline on AZ91 Magnesium Alloy: The Effect of Coating Electrolyte Corrosiveness
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mordike, B.L.; Ebert, T. Magnesium properties, applications and potential. Mater. Sci. Eng. 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Easton, M.; Beer, A.; Barnett, M.; Davies, C.; Dunlop, G.; Durandet, Y.; Blacket, S.; Hilditch, T.; Beggs, P. Magnesium alloy applications in automotive structures. J. Miner. Met. Mater. Soc. 2008, 60, 57–62. [Google Scholar] [CrossRef]
- Kainer, K.U.; von Buch, F. The current state of technology and potential for further development of magnesium applications. In Magnesium-Alloys and Technology; Kainer, K.U., Ed.; Wiley-VCH Verlang GmbH & Co. KGaA: Weinheim, Germany, 2004; pp. 1–12. [Google Scholar]
- Song, G.; Atrens, A. Understanding magnesium corrosion—A frame work for improved alloy performance. Adv. Eng. Mater. 2003, 5, 837–858. [Google Scholar] [CrossRef]
- Ambat, R.; Aung, N.N.; Zhou, W. Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy. J. Appl. Electrochem. 2000, 30, 865–874. [Google Scholar] [CrossRef]
- Song, G. Recent progress in corrosion and protection of magnesium alloys. Adv. Eng. Mater. 2005, 7, 563–586. [Google Scholar] [CrossRef]
- Feng, J.; Chen, Y.; Liu, X.; Liu, T.; Zou, L.; Wang, Y.; Ren, Y.; Fan, Z.; Lv, Y.; Zhang, M. In-Situ hydrothermal crystallization Mg(OH)2 films on magnesium alloy AZ91 and their corrosion resistance properties. Mater. Chem. Phys. 2013, 143, 322–329. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.; Zhang, T.; Meng, G.; Wang, F. High corrosion protection of a polyaniline/organophilic montmorillonite coating for magnesium alloys. Prog. Org. Coat. 2013, 76, 804–811. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, J.; Xie, Y.; Yang, Z. Progress of electroplating and electroless plating on magnesium alloy. Trans. Nonferrous Met. Soc. China 2010, 20, 630–637. [Google Scholar] [CrossRef]
- Li, L.; Cheng, Y.; Wang, H.; Zhang, Z. Anodization of AZ91 magnesium alloy in alkaline solution containing silicate and corrosion properties of anodized films. Trans. Nonferr. Met. Soc. China 2008, 18, 722–727. [Google Scholar] [CrossRef]
- Guo, H.F.; An, M.Z.; Huo, H.B.; Xu, S.; Wu, L.J. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Appl. Surf. Sci. 2006, 252, 7911–7916. [Google Scholar] [CrossRef]
- Sang, J.; Kang, Z.; Li, Y. Corrosion resistance of Mg-Mn-Ce magnesium alloy modified by polymer plating. Trans. Nonfer. Met. Soc. China 2008, 18, 374–379. [Google Scholar] [CrossRef]
- Gu, C.D.; Yan, W.; Zhang, J.L.; Tu, J.P. Corrosion resistance of AZ31B magnesium alloy with a conversion coating produced from a choline chloride-urea based deep eutectic solvent. Corros. Sci. 2016, 106, 108–116. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Guo, X.W.; Wei, Y.H.; Zhai, C.Q.; Ding, W.J. Corrosion protection of polypyrrole electrodeposited on AZ91 magnesium alloys in alkaline solutions. Synth. Met. 2003, 139, 335–339. [Google Scholar] [CrossRef]
- Kazum, O.; Kannan, M.B. Galvanostatic polymerisation of aniline on steel: Improving the coating performance in chloride-containing environment. Synth. Met. 2013, 180, 54–58. [Google Scholar] [CrossRef]
- Cascalheira, A.C.; Aeiyach, S.; Lacaze, P.C.; Abrantes, L.M. Electrochemical synthesis and redox behaviour of polypyrrole coatings on copper in salicylate aqueous solution. Electrochim. Acta 2003, 48, 2523–2529. [Google Scholar] [CrossRef]
- Sitaram, S.P.; Stoffer, J.O.; Keefe, J.O. Application of Conducting Polymers in Corrosion Protection. J. Coat. Technol. 1997, 866, 65–69. [Google Scholar] [CrossRef]
- Malinauskas, A. Chemical deposition of conducting polymers. Polymer 2001, 42, 3957–3972. [Google Scholar] [CrossRef]
- Gospodinova, N.; Terlemezyan, L. Conducting polymers prepared by oxidative polymerisation: Polyaniline. Prog. Polym. Sci. 1998, 23, 1443–1484. [Google Scholar] [CrossRef]
- Raotole, P.; Patil, P.P.; Gaikwad, A.B. Polypyrrole coatings on low carbon steel from aqueous oxalate solution. Int. J. Emerg. Tech. Adv. Technol. 2013, 11, 68–73. [Google Scholar]
- Iroh, J.O.; Su, W. Corrosion performance of polypyrrole applied to low carbon steel by an electrochemical process. Electrochim. Acta 2000, 46, 15–24. [Google Scholar] [CrossRef]
- Pawar, P.; Gaikawad, A.B.; Patil, P.P. Electrochemical synthesis of corrosion protective polyaniline coatings on mild steel from aqueous salicylate medium. Sci. Technol. Adv. Mater. 2006, 7, 732–744. [Google Scholar] [CrossRef]
- Cascalheira, A.C.; Viana, A.S.; Abrantes, L.M. In situ atomic force microscopy investigation of copper behaviour and polypyrrole deposition from salicylate medium. Electrochim. Acta 2008, 53, 5783–5788. [Google Scholar] [CrossRef]
- Guo, X.W.; Jiang, Y.F.; Zhai, C.Q.; Lu, C.; Ding, W.J. Preparation of even polyaniline film on magnesium alloy by pulse potentiostat method. Synth. Met. 2003, 135–136, 169–170. [Google Scholar] [CrossRef]
- Holness, R.J.; Williams, G.; Worsley, D.A.; McMurray, H.N. Polyaniline inhibition of corrosion-driven organic coating cathodic delamination of iron. J. Elecrochem. Soc. 2005, 152, B73–B81. [Google Scholar] [CrossRef]
- Gvozdenović, M.M.; Jugović, B.Z.; Stevanović, J.S.; Trišović, T.L.; Grgur, B.N. Electrochemical polymerization of aniline. In Electropolymerization; Schab-Balcerzak, E., Ed.; In Tech: Rijeka, Croatia, 2011; pp. 77–96. [Google Scholar]
Al | Zn | Mn | Fe | Cu | Si | Mg |
---|---|---|---|---|---|---|
8.81 | 0.79 | 0.21 | 0.003 | 0.003 | <0.01 | bal |
Parameters | 0.10 M Sodium Salicylate | 0.25 M Potassium Hydroxide |
---|---|---|
Ecorr (mV) | −1611 ± 4.95 | −1335 ± 11 |
icorr (µA/cm2) | 19.23 ± 1.61 | 0.2509 ± 0.014 |
Corrosion Rate (mpy) | 34.96 | 0.46 |
pH | 5.81 ± 0.16 | 12.03 ± 0.02 |
Parameters | PASS Coating | PAPH Coating |
---|---|---|
Thickness (µm) | 8.75 ± 0.24 | 2.75 ± 0.04 |
Adhesion (N/mm2) | 1.95 ± 0.07 | ___ |
Parameters | Bare Metal | PASS Coated | PAPH Coated |
---|---|---|---|
Ecorr (mV) | −1296 ± 63.23 | −1473 ± 20.04 | −1428 ± 12.73 |
Ebd (mV) | ___ | −1299 ± 14.14 | 1145 ± 131.52 |
icorr (µA/cm2) | 1.03 ± 0.28 | 0.19 ± 0.01 | 2.71 ± 0.33 |
Corrosion Rate (mpy) | 2.02 | 0.34 | 4.92 |
Degree of Protection (DP) | ___ | 83.17% | ___ |
Parameters | pH | ||
---|---|---|---|
Coating Electrolyte | Before Corrosion | After Corrosion | |
Bare Metal | ___ | 6.56 ± 0.26 | 8.78 ± 0.08 |
PASS Coated | 6.52 ± 0.20 | 6.67 ± 0.08 | 6.73 ± 0.05 |
PAPH Coated | 12.08 ± 0.02 | 6.65 ± 0.06 | 8.76 ± 0.02 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baloch, A.; Kannan, M.B. Electropolymerisation of Aniline on AZ91 Magnesium Alloy: The Effect of Coating Electrolyte Corrosiveness. Metals 2017, 7, 533. https://doi.org/10.3390/met7120533
Baloch A, Kannan MB. Electropolymerisation of Aniline on AZ91 Magnesium Alloy: The Effect of Coating Electrolyte Corrosiveness. Metals. 2017; 7(12):533. https://doi.org/10.3390/met7120533
Chicago/Turabian StyleBaloch, Asif, and M. Bobby Kannan. 2017. "Electropolymerisation of Aniline on AZ91 Magnesium Alloy: The Effect of Coating Electrolyte Corrosiveness" Metals 7, no. 12: 533. https://doi.org/10.3390/met7120533
APA StyleBaloch, A., & Kannan, M. B. (2017). Electropolymerisation of Aniline on AZ91 Magnesium Alloy: The Effect of Coating Electrolyte Corrosiveness. Metals, 7(12), 533. https://doi.org/10.3390/met7120533