Influence of Cryogenic Temperatures on the Microstructure and Mechanical Properties of Magnesium Alloys: A Review
Abstract
:1. Introduction
2. Cryogenic Treatment of Magnesium Alloys
3. Mechanical Properties at Cryogenic Temperatures
4. Conclusions
4.1. Effects of Cryogenic Treatment
- Changes of microstructure, with more twinning in combination with grain orientation changes [8].
- Increased content of precipitated phases, like Mg17Al12, which strengthens the material [9].
- Improvement of ductility due to loss of brittle phases, like Al4RE at low temperatures [10]. This can also improve corrosion resistance.
4.2. Low Temperature Properties
- It is assumed that in magnesium alloys at low temperatures, twinning becomes the rate controlling deformation mechanism rather than slip of dislocations.
- The high solid solubility of the atoms of alloying elements is reduced at lower temperatures, where precipitates form and strengthen the alloy.
Conflict of Interest
References
- Fenn, R.W. Low-temperature properties of cast and wrought magnesium alloys. ASTM Special Tech. Publ. 1961, 287, 51–57. [Google Scholar]
- Barnett, M.R. Twinning and the ductility of magnesium alloys Part I: “Tension” twins. Mater. Sci. Eng. 2007, A464, 1–7. [Google Scholar] [CrossRef]
- Barnett, M.R. Twinning and the ductility of magnesium alloys Part II. “Contraction” twins. Mater. Sci. Eng. 2007, A464, 8–16. [Google Scholar] [CrossRef]
- Bussiba, A.; Kupiec, M.; Ifergane, S.; Stechman, A.; Ben-Artzi, A. Fracture and deformation potential of magnesium alloys at low temperatures. In CP614, Advances in Cryogenic Engineering: Proceedings of the International Cryogenic Materials Conference; Balachandran, B., Ed.; CMC: Madison, WI, USA, 2002; Volume 48, pp. 84–91. [Google Scholar]
- Baldissera, P.; Delprete, C. Deep cryogenic treatment: A bibliographic review. Open Mech. Eng. J. 2008, 2, 1–11. [Google Scholar] [CrossRef]
- Yang, H.S.; Wang, J.; Shen, B.L.; Liu, H.H.; Gao, S.J.; Huang, S.J. Effect of cryogenic treatment on the matrix structure and abrasion resistance of white cast iron subjected to destabilization treatment. Wear 2006, 261, 1150–1154. [Google Scholar] [CrossRef]
- Bensely, A.; Venkatesh, S.; Mohan Lal, D.; Nagarajan, G.; Rajadurai, A.; Junik, K. Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel. Mater. Sci. Eng. 2008, A479, 229–235. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Y.; Chen, Z.; Liu, J. Effect of cryogenic treatment on the microstructure and mechanical properties of AZ31 magnesium alloy. Mater. Manufact. Proc. 2010, 25, 837–841. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, D.; Jiang, Q. Effect of cryogenic thermocycling treatment on the structure and properties of magnesium alloy AZ91. Met. Sci. Heat Treatm. 2012, 53, 589–591. [Google Scholar]
- Bhale, P.; Shastri, H.; Mondal, A.K.; Masanta, M.; Kumar, S. Effect of deep cryogenic treatment on microstructure and properties of AE42 Mg alloy. J. Mater. Eng. Perform. 2016, 25, 3590–3598. [Google Scholar] [CrossRef]
- Mónica, P.; Bravo, P.M.; Cárdenas, D. Deep cryogenic treatment of HPDC AZ91 magnesium alloys prior to aging and its influence on alloy microstructure and mechanical properties. J. Mater. Proc. Technol. 2017, 239, 297–302. [Google Scholar] [CrossRef]
- Asl, K.M.; Tari, A.; Khomamizadeh, F. Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy. Mater. Sci. Eng. 2009, A523, 27–31. [Google Scholar] [CrossRef]
- Amini, K.; Akhbarizadeh, A.; Javadpour, S. Investigating the effect of quench environment and deep cryogenic treatment on the wear behavior of AZ91. Mater. Des. 2014, 54, 154–160. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, S.; Xu, C.; Yang, X.; Lu, D. Enhancing wear resistance of Mg–Zn–Gd alloy by cryogenic treatment. Mater. Lett. 2012, 76, 201–204. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, S.; Xu, C.S.; Zeng, X.S.; Yang, X.J. Effect of cryogenic treatment on the microstructure and mechanical properties of Mg–1.5Zn–0.15 Gd magnesium alloy. Mater. Sci. Eng. 2013, A588, 76–81. [Google Scholar] [CrossRef]
- Dinesh, S.; Senthilkumar, V.; Asokan, P.; Arulkirubakaran, D. Effect of cryogenic cooling on machinability and surface quality of bio-degradable ZK60 Mg alloy. Mater. Des. 2015, 87, 1030–1036. [Google Scholar] [CrossRef]
- Il’ina, I.; Sidorov, N.G.; Morozov, B.S.; Nikitina, M.F.; Koshalev, P.F. The relation between mechanical properties and structure of aluminium and magnesium cast alloys at low temperatures. Strength Mater. 1970, 2, 1075–1078. [Google Scholar] [CrossRef]
- Jiao, X.D.; Li, L.R.; Liu, H.J.; Yang, K. Mechanical properties of low density alloys at cryogenic temperatures. AIP Conf. Proc. 2006, 824, 69–76. [Google Scholar]
- McCammon, R.D.; Rosenberg, H.M. The fatigue and ultimate tensile strengths of metals between 4.2 and 293 K. Proc. R. Soc. 1957, 242, 203–211. [Google Scholar] [CrossRef]
- Martin, H.L.; Imgram, A.G.; Lyman, W.S. NASA SP-5012 Technology Utilisation Report: Effects of Low Temperature on Structural Metals; NASA, Technology Utilization Division: Washington, DC, USA, 1964; pp. 27, 28, 53, and 54.
- Leavenworth, H.W.; Dunkerley, F.J. Development of Light Weight Magnesium Alloys for Low Temperature Applications; Final Summary Report; American Machine & Foundry Company: Alexandria, VA, USA, 1967; Contract No. NAS 8–11168. [Google Scholar]
- Montana, J.W.; Nelson, E.E. ZM-21 magnesium alloy corrosion properties and cryogenic to elevated temperature mechanical properties; NASA Tech. Memo. TM X-64645, George C. Marshall Space Flight Center: Huntsville, AL, USA, 1972.
- Weiss, V.; Schaeffer, G.T.; Saule, A.; Sachs, G. Thermal cycling under constant load to low temperatures of aluminium and magnesium alloys. ASTM Special Tech. Publ. 1961, 287, 37–50. [Google Scholar]
- Tang, W.; Li, X.; Han, E.; Xu, Y.; Li, Y. Deformation behaviour of AZ80 wrought magnesium alloy at cryogenic temperatures. In CP824, Advances in Cryogenic Engineering: Trans. of the Int. Cryogenic Materials Conf.-ICMC; Balachandran, U., Ed.; American Institute of Physics: Melville, NY, USA, 2006; Volume 52, pp. 176–183. [Google Scholar]
- Wang, H.; Dong, S.; Lv, G. Plastic deformation characteristics of an Mg–3Al–1Zn alloy at low temperatures. Mater. Des. 2016, 92, 143–150. [Google Scholar] [CrossRef]
- Grinberg, N.M.; Serdyuk, V.A.; Ostapenko, I.L.; Malinkina, T.I.; Kamyshkov, A.S. Effect of low temperature on fatigue failure of magnesium alloy MA12. Mater. Sci. 1979, 15, 17–21. [Google Scholar] [CrossRef]
- Serdyuk, V.A.; Grinberg, N.M.; Malinkina, T.I.; Kamyshkov, A.S. Influence of low temperature on the kinetics of fatigue failure of magnesium alloys. Mater. Sci. 1980, 16, 63–65. [Google Scholar] [CrossRef]
- Sertsyuk, V.A.; Grinberg, N.M.; Ostapenko, I.L. Fatigue fracture of some magnesium alloys in vacuum at room and low temperatures. Mater. Sci. 1980, 15, 362–365. [Google Scholar] [CrossRef]
- Serdyuk, V.A. Fatigue crack growth rate in magnesium alloys at room and low temperatures. Strength Mater. 1980, 12, 1355–1361. [Google Scholar] [CrossRef]
- Grinberg, N.M.; Serdyuk, V.A.; Malinkina, T.I.; Kamyshkov, A.S. Influence of vacuum and low temperature on fatigue crack growth rate in magnesium alloy sheets. Mater. Sci. 1983, 18, 331–336. [Google Scholar] [CrossRef]
Temperature [K] | Crack Plane Orientation | |||
---|---|---|---|---|
T-L | L-T | T-S | L-S | |
296 | 9.5 | 14.3 | N/A | N/A |
200 | 10.5 | N/A | N/A | N/A |
173 | 10.1 | 15.5 | 8.6 | 9.5 |
123 | 9.5 | 10.2 | 7.0 | 10.1 |
Alloy | Al | Mn | Zn | Zr | Nd | In | Mg |
---|---|---|---|---|---|---|---|
Ml5 | 7.5 | 0.23 | 0.59 | - | - | - | Bal. |
Ml12 | - | - | 4.5 | 0.8 | - | - | Bal. |
Ml10 | - | - | 0.22 | 0.57 | 2.53 | - | Bal. |
VM12 | - | - | - | 0.48 | 2.3 | 0.4 | Bal. |
Temperature [K] | UTS [MPa] | YS [MPa] | Elongation [%] |
---|---|---|---|
300 | 217 | 132 | 9.9 |
77 | 282 | - | 4.5 |
4.2 | 366 | - | 4.5 |
Alloy | Li | Al | Mg |
---|---|---|---|
LA91 | 9.0 | 1.0 | Bal. |
LA141 | 14.5 | 1.5 | Bal. |
Alloy | Al | Zn | Mn | Th | Zr | Li | Cd | Ag |
---|---|---|---|---|---|---|---|---|
II4 | - | 6.0 | - | 3.0 | 1.0 | 7.0 | 5.0 | 6.0 |
IA6 | 4.0 | 2.0 | 1.0 | 3.0 | - | 9.0 | - | 4.0 |
ZLH972 | - | 9.0 | - | 2.0 | - | 7.0 | - | - |
Zn | Mn | Si | Fe | Sn | Pb | Cu | Ni | Mg |
---|---|---|---|---|---|---|---|---|
1.65 | 1.20 | <0.03 | <0.01 | <0.01 | <0.02 | <0.001 | <0.001 | Bal. |
Alloy | ASTM Heat Treatment | Al | Mn | Zn | Zr | Th | RE | Ag |
---|---|---|---|---|---|---|---|---|
Casting Alloys | ||||||||
AZ91C | T6 | 8.55 | 0.2 | 0.76 | - | - | - | - |
AZ92A | T6 | 9.5 | 0.2 | 2.01 | - | - | - | - |
EZ33A | T5 | - | 0.33 | 2.77 | 0.68 | - | 3.32 | - |
HK31A | T6 | - | 0.43 | - | 0.84 | 2.99 | - | - |
QE22A | T6 | - | 0.03 | - | 0.7 | - | 2.08 | 2.46 |
ZH62A | T5 | 0.057 | 5.46 | 0.87 | 1.79 | - | - | - |
Sheet Alloys | ||||||||
AZ31B | H24 | 2.9 | 0.44 | 0.94 | - | - | - | - |
HK31A | H24 | - | 0.05 | - | 0.95 | 2.64 | - | - |
HK31A | O | - | 0.059 | - | 0.63 | 2.95 | - | - |
HM21A | T8 | - | 0.47 | - | - | 2.48 | - | - |
ZE10A | O | - | 0.087 | 1.16 | - | - | 0.17 | - |
ZE10A | H24 | - | 0.087 | 1.16 | - | - | 0.17 | - |
Extrusion Alloys | ||||||||
ZK60A | T5 | - | - | 5.5 | 0.55 | - | - | - |
AZ31B | F | 3.0 | - | 1.0 | - | - | - | - |
AZ61A | F | 6.5 | - | 1.0 | - | - | - | - |
HM31A | T5 | - | 1.9 | - | - | 3.12 | - | - |
Alloy | Al | Zn | Mn | Nd | Zr | Li | Ca | La | Y | Ce |
---|---|---|---|---|---|---|---|---|---|---|
IMV6 | 0.12 | - | 0.55 | - | - | - | 0.49 | - | 7.8 | 0.11 |
MA2-1 | 4.17 | 0.85 | 0.5 | - | - | - | - | - | - | - |
MA15 | - | 3.15 | - | - | - | - | 1.88 | 0.83 | - | - |
MA12 | - | - | - | 2.9 | 0.44 | - | - | - | - | - |
IMV2 or MA21 | 5.4 | 1.0 | - | - | - | 8.6 | 4.7 | - | - | - |
Alloy | Room Temperature | −135 °C | ||||
---|---|---|---|---|---|---|
Rm [MPa] | Rp0.2 [MPa] | A [%] | Rm [MPa] | Rp0.2 [MPa] | A [%] | |
IMV6 | 304 | 242 | 16 | - | - | - |
MA2-1 | 290 | 220 | 11.9 | 382 | 294 | 7.4 |
MA15 | 269 | 225 | 11.0 | 397 | 314 | - |
MA12 | 223 | 153 | 9.5 | 270 | 201 | 9.3 |
IMV2 or MA21 | 209 | 128 | 6.3 | 308 | 203 | 6.3 |
Alloy | Room Temperature | −135 °C | ||||
---|---|---|---|---|---|---|
N0 [103 cycles] | Ni [103 cycles] | Ni/N0 | N0 [103 cycles] | Ni [103 cycles] | Ni/N0 | |
IMV6 | 130 | 12 | 0.09 | 530 | 210 | 0.4 |
MA2-1 | 96 | 9 | 0.09 | 305 | 130 | 0.4 |
MA15 | 65 | 8 | 0.12 | 200 | 110 | 0.55 |
MA12 | 30 | 6 | 0.2 | 78 | 35 | 0.45 |
IMV2 or MA21 | 117 | 8 | 0.08 | 104 | 36 | 0.36 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dieringa, H. Influence of Cryogenic Temperatures on the Microstructure and Mechanical Properties of Magnesium Alloys: A Review. Metals 2017, 7, 38. https://doi.org/10.3390/met7020038
Dieringa H. Influence of Cryogenic Temperatures on the Microstructure and Mechanical Properties of Magnesium Alloys: A Review. Metals. 2017; 7(2):38. https://doi.org/10.3390/met7020038
Chicago/Turabian StyleDieringa, Hajo. 2017. "Influence of Cryogenic Temperatures on the Microstructure and Mechanical Properties of Magnesium Alloys: A Review" Metals 7, no. 2: 38. https://doi.org/10.3390/met7020038
APA StyleDieringa, H. (2017). Influence of Cryogenic Temperatures on the Microstructure and Mechanical Properties of Magnesium Alloys: A Review. Metals, 7(2), 38. https://doi.org/10.3390/met7020038