Generalized Stacking Fault Energies of Aluminum Alloys–Density Functional Theory Calculations
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Islamgaliev, R.K.; Nesterov, K.M.; Bourgon, J.; Champion, Y.; Valiev, R.Z. Nanostructured Cu-Cr alloy with high strength and electrical conductivity. J. Appl. Phys. 2014, 115, 1–5. [Google Scholar] [CrossRef]
- Youssef, K.; Sakaliyska, M.; Bahmanpour, H.; Scattergood, R.; Koch, C. Effect of stacking fault energy on mechanical behavior of bulk nanocrystalline Cu and Cu alloys. Acta Mater. 2011, 59, 5758–5764. [Google Scholar] [CrossRef]
- Tian, Y.Z.; Wu, S.D.; Zhang, Z.F.; Figueiredo, R.B.; Gao, N.; Langdon, T.G. Strain hardening behavior of a two-phase Cu-Ag alloy processed by high-pressure torsion. Scr. Mater. 2011, 65, 477–480. [Google Scholar] [CrossRef]
- Karimpoor, A.A.; Erb, U.; Aust, K.T.; Palumbo, G. High strength nanocrystalline cobalt with high tensile ductility. Scr. Mater. 2003, 49, 651–656. [Google Scholar] [CrossRef]
- Bhatia, M.A.; Rajagopalan, M.; Darling, K.A.; Tschopp, M.A.; Solanki, K.N. The role of Ta on twinnability in nanocrystalline Cu–Ta alloys. Mater. Res. Lett. 2017, 5, 48–54. [Google Scholar] [CrossRef]
- Bufford, D.; Liu, Y.; Zhu, Y.; Bi, Z.; Jia, Q.X.; Wang, H.; Zhang, X. Formation Mechanisms of High-density Growth Twins in Aluminum with High Stacking-Fault Energy. Mater. Res. Lett. 2013, 1, 51–60. [Google Scholar] [CrossRef]
- Koch, C.C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 2003, 49, 657–662. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, X.; Hashimoto, T.; Zhang, X.; Wang, J. Machining introduced microstructure modification in aluminium alloys. J. Alloy. Compd. 2018, 757, 233–238. [Google Scholar] [CrossRef]
- Tadmor, E.B.; Bernstein, N. A first-principles measure for the twinnability of FCC metals. J. Mech. Phys. Solids. 2004, 52, 2507–2519. [Google Scholar] [CrossRef]
- Siegel, D.J. Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys. Appl. Phys. Lett. 2005, 87, 121901–121903. [Google Scholar] [CrossRef]
- Laksana, T.; Fu, W.; Chen, H.; Zhang, C.; Yang, Z. First-principles calculations of generalized-stacking-fault-energy of Co-based alloys. Comput. Mater. Sci. 2016, 121, 86–96. [Google Scholar] [CrossRef]
- Muzyk, M.; Pakiela, Z.; Kurzydlowski, K.J. Ab initio calculations of the generalized stacking fault energy in aluminium alloys. Scr. Mater. 2011, 64, 916–918. [Google Scholar] [CrossRef]
- Li, W.; Lu, S.; Hu, Q.-M.M.; Kwon, S.K.; Johansson, B.; Vitos, L. Generalized stacking fault energies of alloys. J. Phys. Condens. Matter 2014, 26, 265005. [Google Scholar] [CrossRef] [PubMed]
- Muzyk, M.; Pakiela, Z.; Kurzydlowski, K.J. Generalized stacking fault energy in magnesium alloys: Density functional theory calculations. Scr. Mater. 2012, 66, 219–222. [Google Scholar] [CrossRef]
- Kawasaki, M.; Alhajeri, S.N.; Xu, C.; Langdon, T.G. The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion. Mater. Sci. Eng. A 2011, 529, 345–351. [Google Scholar] [CrossRef]
- Cabibbo, M. Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys. Mater. Sci. Eng. A 2013, 560, 413–432. [Google Scholar] [CrossRef]
- Zhong, H.; Rometsch, P.A.; Cao, L.; Estrin, Y. The influence of Mg/Si ratio and Cu content on the stretch formability of 6xxx aluminium alloys. Mater. Sci. Eng. A 2015, 651, 688–697. [Google Scholar] [CrossRef]
- Zhao, D.; Løvvik, O.M.; Marthinsen, K.; Li, Y. Impurity effect of Mg on the generalized planar fault energy of Al. J. Mater. Sci. 2016, 51, 6552–6568. [Google Scholar] [CrossRef]
- Zhao, D.; Martin, O.; Marthinsen, K.; Li, Y. Combined effect of Mg and vacancy on the generalized planar fault energy of Al. J. Alloy. Compd. 2017, 690, 841–850. [Google Scholar] [CrossRef]
- Liu, L.H.; Chen, J.H.; Fan, T.W.; Liu, Z.R.; Zhang, Y.; Yuan, D.W. The possibilities to lower the stacking fault energies of aluminum materials investigated by first-principles energy calculations. Comput. Mater. Sci. 2015, 108, 136–146. [Google Scholar] [CrossRef]
- Houtny, D.; Skulina, D.; Pantělejev, L.; Lenczowski, B.; Palm, F.; Nick, A.; Stief, P.; Dantan, J.; Etienne, A.; Siadat, A. Processing of Al-Sc aluminum alloy using SLM technology. Procedia CIRP 2018, 74, 44–48. [Google Scholar] [CrossRef]
- Jia, H.; Jin, S.; Li, Y. Formation of S3{110} incoherent twin boundaries through geometrically necessary boundaries in an Al-8Zn alloy subjected to one pass of equal channel angular pressing. J. Alloy. Compd. 2018, 762, 190–195. [Google Scholar] [CrossRef]
- Teymoory, P.; Zarei-Hanzaki, A.; Farabi, E.; Monajati, H.; Abedi, H.R. Grain Refinement through Shear Banding in Severely Plastic Deformed A206 Aluminum Alloy. Adv. Eng. Mater. 2018, 20, 1–12. [Google Scholar] [CrossRef]
- Velasco, L.; Polyakov, M.N.; Hodge, A.M. Influence of stacking fault energy on twin spacing of Cu and Cu-Al alloys. Scr. Mater. 2014, 83, 33–36. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Lipinska, M.; Olejnik, L.; Pietras, A.; Rosochowski, A.; Bazarnik, P.; Golinski, J.; Brynk, T.; Lewandowska, M. Microstructure and mechanical properties of friction stir welded joints made from ultra fine grained aluminium 1050. Mater. Des. 2015, 88, 22–31. [Google Scholar] [CrossRef]
- Moradi, M.; Aval, J.H.; Jamaati, R.; Amirkhanlou, S.; Ji, S. Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061. J. Manuf. Process. 2018, 32, 1–10. [Google Scholar] [CrossRef]
- Lipinska, M.; Chrominski, W.; Olejnik, L.; Golinski, J.; Rosochowski, A.; Lewandowska, M. Ultrafine-Grained Plates of Al-Mg-Si Alloy Obtained by Incremental Equal Channel Angular Pressing: Microstructure and Mechanical Properties. Metall. Mater. Trans. A 2017, 48, 4871–4882. [Google Scholar] [CrossRef]
- Rezayat, M.; Parsa, M.H.; Mirzadeh, H.; Cabrera, J.M. Microstructural investigation of Al-Mg/B4C composite deformed at elevated temperature. J. Alloy. Compd. 2018, 763, 643–651. [Google Scholar] [CrossRef]
- Sun, Y.; Aindow, M.; Hebert, R.J.; Langdon, T.G.; Lavernia, E.J. High-pressure torsion-induced phase transformations and grain refinement in Al / Ti composites. J. Mater. Sci. 2017, 52, 12170–12184. [Google Scholar] [CrossRef]
Al+ | Al | Li | Na | Mg | Si | Ga | |||
USFE | 189 | 176 | 128 | 199 | 161 | 171 | |||
SFE | 162 | 134 | 93 | 145 | 140 | 139 | |||
UTE | 239 | 225 | 156 | 239 | 219 | 215 | |||
TE | 161 | 129 | 78 | 135 | 141 | 148 | |||
SFE/USFE | 0.862 | 0.763 | 0.723 | 0.730 | 0.870 | 0.813 | |||
UTE/USFE | 1.265 | 1.282 | 1.213 | 1.200 | 1.360 | 1.257 | |||
Al+ | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu |
USFE | 129 | 176 | 209 | 243 | 255 | 248 | 239 | 215 | 189 |
SFE | 70 | 93 | 115 | 162 | 193 | 202 | 201 | 184 | 162 |
UTE | 188 | 258 | 321 | 372 | 387 | 378 | 361 | 318 | 266 |
TE | 96 | 165 | 232 | 287 | 315 | 312 | 292 | 245 | 191 |
SFE/USFE | 0.544 | 0.529 | 0.550 | 0.667 | 0.755 | 0.814 | 0.841 | 0.855 | 0.857 |
UTE/USFE | 1.453 | 1.463 | 1.532 | 1.529 | 1.517 | 1.522 | 1.510 | 1.480 | 1.407 |
Al+ | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag |
USFE | 59 | 121 | 181 | 243 | 265 | 257 | 242 | 207 | 168 |
SFE | 25 | 45 | 78 | 147 | 194 | 209 | 207 | 180 | 150 |
UTE | 118 | 204 | 300 | 389 | 424 | 416 | 387 | 318 | 240 |
TE | 59 | 132 | 220 | 301 | 353 | 357 | 326 | 254 | 182 |
SFE/USFE | 0.429 | 0.376 | 0.432 | 0.606 | 0.730 | 0.814 | 0.855 | 0.870 | 0.892 |
UTE/USFE | 2.000 | 1.683 | 1.657 | 1.604 | 1.596 | 1.618 | 1.598 | 1.537 | 1.428 |
Al+ | Hf | Ta | W | Re | Os | Ir | Pt | Au | |
USFE | 134 | 186 | 242 | 280 | 275 | 256 | 219 | 169 | |
SFE | 60 | 83 | 137 | 195 | 218 | 219 | 197 | 158 | |
UTE | 215 | 301 | 390 | 440 | 440 | 413 | 348 | 255 | |
TE | 138 | 218 | 296 | 359 | 373 | 351 | 290 | 209 | |
SFE/USFE | 0.443 | 0.448 | 0.568 | 0.698 | 0.794 | 0.858 | 0.902 | 0.934 | |
UTE/USFE | 1.601 | 1.619 | 1.609 | 1.571 | 1.601 | 1.616 | 1.590 | 1.504 | |
Al+ | Zn | Cd | In | Sn | Sb | Pb | Ge | Te | |
USFE | 185 | 146 | 122 | 101 | 68 | 58 | 130 | 23 | |
SFE | 159 | 136 | 111 | 90 | 66 | 53 | 112 | 20 | |
UTE | 236 | 191 | 159 | 148 | 110 | 102 | 183 | 45 | |
TE | 167 | 152 | 135 | 123 | 88 | 98 | 123 | 38 | |
SFE/USFE | 0.859 | 0.930 | 0.906 | 0.889 | 0.971 | 0.926 | 0.862 | 0.859 | |
UTE/USFE | 1.276 | 1.305 | 1.305 | 1.465 | 1.622 | 1.764 | 1.404 | 1.939 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzyk, M.; Pakieła, Z.; Kurzydłowski, K.J. Generalized Stacking Fault Energies of Aluminum Alloys–Density Functional Theory Calculations. Metals 2018, 8, 823. https://doi.org/10.3390/met8100823
Muzyk M, Pakieła Z, Kurzydłowski KJ. Generalized Stacking Fault Energies of Aluminum Alloys–Density Functional Theory Calculations. Metals. 2018; 8(10):823. https://doi.org/10.3390/met8100823
Chicago/Turabian StyleMuzyk, Marek, Zbigniew Pakieła, and Krzysztof J. Kurzydłowski. 2018. "Generalized Stacking Fault Energies of Aluminum Alloys–Density Functional Theory Calculations" Metals 8, no. 10: 823. https://doi.org/10.3390/met8100823
APA StyleMuzyk, M., Pakieła, Z., & Kurzydłowski, K. J. (2018). Generalized Stacking Fault Energies of Aluminum Alloys–Density Functional Theory Calculations. Metals, 8(10), 823. https://doi.org/10.3390/met8100823