Effect of Carbon Content in Retained Austenite on the Dynamic Tensile Behavior of Nanostructured Bainitic Steel
Abstract
:1. Introduction
2. Experimentals
3. Results
3.1. Original Microstructures
3.2. Dynamic and Quasistatic Tensile Behavior
3.3. Dynamic Tensile Fracture Morphology
4. Discussion
4.1. Effect of the Carbon Content on the Stability of Retained Austenite
4.2. Effect of the Stability of Retained Austenite on Dynamic Tensile Behavior
5. Conclusions
- (1)
- The high carbon film-like austenite was much more stable than the low carbon blocky austenite during deformation.
- (2)
- The nanostructured bainitic steels exhibited the more remarkable dynamic tensile properties due to the better TRIP effect and strain rate hardening effect exhibited by the high carbon film-like retained austenite.
- (3)
- The large gap in engineering stress and strain curves occurred at a higher strain rate (100–200 s−1) for the nanostructured bainitic steels because of the better stability of film-like austenite.
Author Contributions
Funding
Conflicts of Interest
References
- Takahashi, M.; Uenishi, A.; Yoshida, H.; Kuriyama, H. Advanced high strength steels for automobile body structures. Mater. Sci. Forum 2007, 539–543, 4386–4390. [Google Scholar] [CrossRef]
- Slycken, J.V.; Verleysen, P.; Degrieck, J.; Bouquerel, J.; Cooman, B.C.D. Crashworthiness characterization and modelling of high-strength steels for automotive applications. Proc. Inst. Mech. Eng. Part D 2006, 220, 391–400. [Google Scholar] [CrossRef]
- Tarigopula, V.; Langseth, M.; Hopperstad, O.S.; Clausen, A.H. Axial crushing of thin-walled high-strength steel sections. Int. J. Impact Eng. 2006, 32, 847–882. [Google Scholar] [CrossRef]
- Peixinho, N.; Jones, N.; Pinho, A. Experimental and numerical study in axial crushing of thin walled sections made of high-strength steels. J. Phys. IV 2003, 110, 717–722. [Google Scholar] [CrossRef]
- Huh, H.; Lim, J.H.; Song, J.H.; Lee, K.S.; Lee, Y.W.; Han, S.S. Crashworthiness Assessment of side impact of an auto-body with 60TRIP steel side members. Int. J. Automot. Technol. 2003, 4, 149–156. [Google Scholar]
- Bhadeshia, H.K.D.H. Nanostructured bainite. Proc. R. Soc. A 2010, 466, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Garcia–Mateo, C.; Caballero, F.G. Ultra-high–strength bainitic steels. ISIJ Int. 2005, 45, 1736–1740. [Google Scholar] [CrossRef]
- Caballero, F.G.; Miller, M.K.; Babu, S.S.; Garcia–Mateo, C. Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Mater. 2007, 55, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.G.; Miller, M.K.; Garcia–Mateo, C. Carbon supersaturation of ferrite in a nanocrystalline bainitic steel. Acta Mater. 2010, 58, 2338–2343. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mateo, C.; Caballero, F.G.; Bhadeshia, H.K.D.H. Development of hard bainite. ISIJ Int. 2003, 43, 1238–1243. [Google Scholar] [CrossRef]
- Morales-Rivas, L.; González-Orive, A.; Garcia-Mateo, C.; Hernández-Creus, A.; Caballero, F.G.; Vázquez, L. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM. Sci. Rep. 2015, 5, 17164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babu, S.S.; Rohrmann, J.; Misra, R.D.K. Microstructure evolution during tensile deformation of a nanostructured bainitic steel. Scr. Mater. 2013, 69, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Diego-Calderón, I.D.; Santofmia, M.J.; Molina-Aldareguia, J.M.; Monclús, M.A.; Sabirov, I. Deformation behavior of a high strength multiphase steel at macro- and micro-scales. Mater. Sci. Eng. A 2014, 611, 201–211. [Google Scholar] [CrossRef]
- Jacques, P.J.; Furnémont, Q.; Lani, F.; Pardoen, T.; Delannay, F. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing. Acta Mater. 2007, 55, 3681–3693. [Google Scholar] [CrossRef]
- Seol, J.B.; Jung, J.E.; Jang, Y.W.; Park, C.G. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe–Mn–C steels. Acta Mater. 2013, 61, 558–578. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, M.; Guo, Z.; Chen, N.; Rong, Y. A new effect of retained austenite on ductility enhancement in high-strength quenching–partitioning–tempering martensitic steel. Mater. Sci. Eng. A 2011, 528, 8486–8491. [Google Scholar] [CrossRef]
- Cui, W.; Gintalas, M.; Rivera-Diaz-del-Castillo, P.E.J. Stability of retained austenite in martensitic high carbon steels. Part II: Mechanical stability. Mater. Sci. Eng. A 2018, 711, 696–703. [Google Scholar] [CrossRef]
- Muránsky, O.; Horňak, P.; Lukáš, P.; Zrník, J.; Šittner, P. Investigation of retained austenite stability in Mn–Si TRIP steel in tensile deformation condition. J. Achiev. Mater. Manuf. Eng. 2005, 14, 26–30. [Google Scholar]
- Tang, Z.Y.; Huang, J.N.; Ding, H.; Cai, Z.H.; Misra, R.D.K. Austenite stability and mechanical properties of a low-alloyed ECAPed TRIP-aided steel. Mater. Sci. Eng. A 2018, 724, 95–102. [Google Scholar] [CrossRef]
- Jimenez-Melero, E.; Dijk, N.H.V.; Zhao, L.; Sietsma, J.; Offerman, S.E.; Wright, J.P.; Zwaag, S.V.D. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels. Acta Mater. 2007, 55, 6713–6723. [Google Scholar] [CrossRef]
- Xiong, X.C.; Chen, B.; Huang, M.X.; Wang, J.F.; Wang, L. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scr. Mater. 2013, 68, 321–324. [Google Scholar] [CrossRef]
- Timokhina, I.B.; Hodgson, P.D.; Pereloma, E.V. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall. Mater. Trans. A 2004, 35, 2331–2341. [Google Scholar] [CrossRef]
- Caballero, F.G.; Miller, M.K.; Clarke, A.J.; Garcia–Mateo, C. Examination of carbon partitioning into austenite during tempering of bainite. Scr. Mater. 2010, 63, 442–445. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.G.; Garcia-Mateo, C.; Santofimia, M.J.; Miller, M.K.; Andrés, C.G.D. New experimental evidence on the incomplete transformation phenomenon in steel. Acta Mater. 2009, 57, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Jacques, P.J. Transformation-induced plasticity for high strength formable steels. Curr. Opin. Solid State Mater. Sci. 2004, 8, 259–265. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Driving force for martensitic transformation in steels. Met. Sci. 1981, 15, 175–177. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Steels for bearings. Prog. Mater. Sci. 2012, 57, 268–435. [Google Scholar] [CrossRef]
- Sherby, O.D.; Wadsworth, J.; Lesuer, D.R.; Syn, C.K. Revisiting the Structure of Martensite in Iron-Carbon Steels. Mater. Trans. 2008, 49, 2016–2027. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Kim, D.I.; Kim, H.S.; Bhadeshia, H.K.D.H.; Suh, D.W. Strain partitioning and mechanical stability of retained austenite. Scr. Mater. 2010, 63, 297–299. [Google Scholar] [CrossRef]
- Mahieu, J.; Maki, J.; Cooman, B.C.De.; Claessens, S. Phase transformation and mechanical properties of si-free CMnAl transformation-induced plasticity-aided steel. Metall. Mater. Trans. A 2002, 33, 2573–2580. [Google Scholar] [CrossRef]
- Hao, Q.G.; Qin, S.W.; Liu, Y.; Zuo, X.W.; Chen, N.L.; Huang, W.; Rong, Y.H. Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel. Mater. Sci. Eng. A 2016, 662, 16–25. [Google Scholar] [CrossRef]
- Grajcar, A.; Kuziak, R.; Zalecki, W. Third generation of AHSS with increased fraction of retained austenite for the automotive industry. Arch. Civ. Mech. Eng. 2012, 12, 334–341. [Google Scholar] [CrossRef]
- Hyoung, S.P.; Jong, C.H.; Nam, S.L.; Seol, J.B.; Chan, G.P. Nano-scale observation on the transformation behavior and mechanical stability of individual retained austenite in CMnSiAl TRIP steels. Mater. Sci. Eng. A 2015, 627, 262–269. [Google Scholar]
- Shen, Y.F.; Qiu, L.N.; Sun, X.; Zuo, L.; Liaw, P.K.; Raabe, D. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels. Mater. Sci. Eng. A 2015, 636, 551–564. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization (ISO). Steels-Manual Point Counting Method for Statistically Estimating the Volume Fraction of a Constituent with a Point Grid; ISO 9042; ISO: Geneva, Switzerland, 1988. [Google Scholar]
- Cullity, B.D. Elements of X–ray Diffraction, 2nd ed.; Addison-Wesley Publishing Company Inc.: Boston, MA, USA, 1978; p. 432. [Google Scholar]
- Pereloma, E.V.; Timokhina, I.B.; Miller, M.K.; Hodgson, P.D. Three-dimensional atom probe analysis of solute distribution in thermomechanically processed TRIP steels. Acta Mater. 2007, 55, 2587–2598. [Google Scholar] [CrossRef]
- Tomota, Y.; Tokuda, H.; Adachi, Y.; Wakita, M.; Minakawa, N.; Moriai, A.; Morii, Y. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction. Acta Mater. 2004, 52, 5737–5745. [Google Scholar] [CrossRef]
- Curtze, S.; Kuokkala, V.T.; Hokka, M.; Peura, P. Deformation behavior of TRIP and DP steels in tension at different temperatures over a wide range of strain rates. Mater. Sci. Eng. A 2009, 507, 124–131. [Google Scholar] [CrossRef]
- Oliver, S.; Jones, T.B.; Fourlaris, G. Dual phase versus TRIP strip steels: Microstructural changes as a consequence of quasi-static and dynamic tensile testing. Mater. Charact. 2007, 58, 390–400. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Ni | Mo | Fe | Bs (°C) | Ms (°C) | |
---|---|---|---|---|---|---|---|---|---|
wt.% | 0.60 | 0.30 | 0.80 | 0.85 | 1.75 | 0.20 | balance | 452 ± 3 | 246 ± 3 |
at.% | 2.77 | 0.59 | 0.79 | 0.91 | 1.65 | 0.12 |
Heat Treatment | Before Dynamic Tensile | After Dynamic Tensile | |||||
---|---|---|---|---|---|---|---|
Average Size of Blocky M/A and Thickness of Bainite and Martensite, nm | Volume Fraction of Retained Austenite, % | Average Hardness, HV1 | Volume Fraction of Retained Austenite, % | ||||
M/A | B/M | VA | VFA | VM/A | VA′ | ||
B3 | 500 ± 220 | 100 ± 50 | 23.7 | 21.4 | 2.3 | 595 ± 5 | 12.1 |
Q&P | 2000 ± 450 | 500 ± 150 | 22.4 | 3.4 | 19.0 | 436 ± 4 | 17.6 |
Strain Rate, s−1 | B3 | Q&P | ||||
---|---|---|---|---|---|---|
UTS, MPa | EI, % | UTS × EI, MPa·% | UTS, MPa | EI, % | UTS × EI, MPa·% | |
0.1 | 1249 ± 5 | 7.7 ± 0.1 | 9617 | 1072 ± 3 | 6.8 ± 0.2 | 7289 |
50 | 1268 ± 6 | 9.3 ± 0.2 | 11,792 | 1366 ± 6 | 8.2 ± 0.1 | 11,201 |
100 | 1376 ± 4 | 12.8 ± 0.1 | 17,612 | 1384 ± 5 | 8.6 ± 0.1 | 11,902 |
200 | 1713 ± 3 | 8.9 ± 0.1 | 15,246 | 1426 ± 8 | 9.2 ± 0.2 | 13,119 |
500 | 1772 ± 4 | 10.5 ± 0.3 | 18,606 | 1505 ± 3 | 10.2 ± 0.1 | 15,802 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Hou, T.; Zhang, C.; Zhong, L.; Wu, K. Effect of Carbon Content in Retained Austenite on the Dynamic Tensile Behavior of Nanostructured Bainitic Steel. Metals 2018, 8, 907. https://doi.org/10.3390/met8110907
Zhou W, Hou T, Zhang C, Zhong L, Wu K. Effect of Carbon Content in Retained Austenite on the Dynamic Tensile Behavior of Nanostructured Bainitic Steel. Metals. 2018; 8(11):907. https://doi.org/10.3390/met8110907
Chicago/Turabian StyleZhou, Wen, Tingping Hou, Cong Zhang, Lei Zhong, and Kaiming Wu. 2018. "Effect of Carbon Content in Retained Austenite on the Dynamic Tensile Behavior of Nanostructured Bainitic Steel" Metals 8, no. 11: 907. https://doi.org/10.3390/met8110907
APA StyleZhou, W., Hou, T., Zhang, C., Zhong, L., & Wu, K. (2018). Effect of Carbon Content in Retained Austenite on the Dynamic Tensile Behavior of Nanostructured Bainitic Steel. Metals, 8(11), 907. https://doi.org/10.3390/met8110907