Effect of Sulfur Content on the Properties and MnS Morphologies of DH36 Structural Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microstructural Characterization
2.3. Mechanical Testing
3. Results
3.1. MnS Inclusions in Rolled Steel
3.2. Effects of Sulfur Content on MnS Morphology
3.3. Effects of Sulfur Content on Steel Microstructure and Properties
4. Discussion
4.1. Thermodynamics of MnS Precipitation
- (1)
- w[S]% > 0.015 mass %: MnS is generated in the δ-ferrite.
- (2)
- w[S]% < 0.007 mass %: MnS is generated in the austenite.
- (3)
- The temperature at which MnS starts to precipitate gradually increases with the sulfur content.
- (4)
- Controlling sulfur content is the most effective measure to ensure that MnS precipitates in δ-ferrite.
4.2. Kinetics of MnS Precipitation
4.3. Contribution of MnS to Grain Refinement
5. Industrial Production Results
6. Conclusions
- (1)
- Decreasing the sulfur content in DH36 steel alters the morphology of MnS from thread-shaped to spherical- or spindle-shaped, and also decreases the average size and number of MnS. For the steel with 20 ppm sulfur content, the ratio of spherical MnS increases to 90%. Compared to steels with 70, 150, and 380 ppm sulfur, the sample with 20 ppm sulfur had the most favorable mechanical properties.
- (2)
- In the DH36 steel with 150 and 380 ppm sulfur contents, MnS precipitates in δ-ferrite; while, in those with 70 and 20 ppm sulfur content, MnS precipitates in austenite. Plenty of nanoscale MnS particles were observed by TEM in the steel with 20 ppm S, and the grain size becomes finer due to its pinning effect.
- (3)
- The temperatures of maximum nucleation rate and fastest precipitation of MnS are much less than the soaking temperature when the S content is 20 ppm, which is the main reason for the formation of nanoscale MnS. Controlling the S content is the key to decrease the size of MnS, improve the morphology of MnS, and reduce the negative influence of sulfide on the properties of DH36 steel.
Author Contributions
Funding
Conflicts of Interest
References
- Ouchi, C. Development of steel plates by intensive use of TMCP and direct quenching processes. ISIJ Int. 2001, 41, 542–553. [Google Scholar] [CrossRef]
- Czyryca, E.J.; Link, R.E.; Wong, R.J.; Aylor, D.A.; Montem, T.W.; Gudas, J.P. Development and certification of HSLA-100 steel for naval ship construction. Nav. Eng. J. 1990, 102, 63–82. [Google Scholar] [CrossRef]
- Shao, X.; Wang, X.; Ji, C.; Li, H.B.; Yang, C.; Zhu, G.S. Morphology, size and distribution of MnS inclusions in non-quenched and tempered steel during heat treatment. Int. J. Miner. Metall. Mater. 2015, 22, 483–491. [Google Scholar] [CrossRef]
- Ray, G.P.; Jarman, R.A.; Thomas, J.G.N. The influence of non-metallic inclusions on the corrosion fatigue of mild steel. Brit. Corros. J. 1985, 15, 226–227. [Google Scholar] [CrossRef]
- Flowers, J.J.W.; Karas, S.P. Coalescence of sulfides during secondary growth in 3% silicon—Iron. J. Appl. Phys. 1967, 38, 1085–1086. [Google Scholar] [CrossRef]
- Flowers, J. Grain growth inhibition by spherical particles with a distribution of sizes. IEEE Trans. Magn. 1979, 15, 1601–1603. [Google Scholar] [CrossRef]
- McFarland, W.H.; Cronn, J.T. Spheroidization of type II manganese sulfides by heat treatment. Metall. Trans. A 1981, 12, 915. [Google Scholar] [CrossRef]
- Wilson, P.C.; Murty, Y.V.; Kattamis, T.Z.; Mehrabian, R. Effect of homogenization on sulphide morphology and mechanical properties of rolled AISI 4340 steel. Metals Technol. 1975, 2, 241–244. [Google Scholar] [CrossRef]
- Murty, Y.V.; Kattamis, T.Z.; Mehrabian, R.; Flemings, M.C. Behavior of sulfide inclusions during thermomechanical processing of AISI 4340 steel. Metall. Trans. A 1977, 8, 1275. [Google Scholar] [CrossRef]
- Shao, X.; Wang, X.; Jiang, M.; Wang, W.; Huang, F. Effect of heat treatment conditions on shape control of large-sized elongated MnS inclusions in resulfurized free-cutting steels. ISIJ Int. 2011, 51, 1995–2001. [Google Scholar] [CrossRef]
- Liu, D.L. Nano-scale carbide and strengthening effect in low carbon steel produced by CSP process. J. Univ. Sci. Technol. Beijing 2003, 25, 328–331. [Google Scholar]
- Guo, J.; Guo, H.J.; Fang, K.M.; Duan, S.C.; Shi, X.; Yang, W.S. Morphology prediction theory and experimental measurement for the secondary phase particle in steel. Acta Metall. Sin. 2017, 53, 789–796. [Google Scholar]
- Xia, Z.X.; Ye, W.B.; Yang, Z.Y.; Chen, J.X. Influence of MnS morphology on toughness of ultra-high strength steel. J. Iron Steel Res. Int. 2009, 21, 11–14. [Google Scholar]
- Van Eeghem, J.; De, S.A. Side effects of cast steel deoxidation. Mod. Cast. 1964, 45, 1421–1448. [Google Scholar]
- Fu, J. New generation of low carbon steel-LSLC steel. Chin. J. Nonferr. Met. 2004, 14, 82–90. [Google Scholar]
- Yong, Q.L. Secondary Phase in Steel, 1st ed.; Metallurgical Industry Press: Beijing, China, 2006; pp. 476–478. [Google Scholar]
- Takada, H.; Kaneko, K.; Inoue, T.; Kinoshita, S. Effect of the amount and shape of inclusions on the directionality of ductility in carbon-manganese steels. ASTM Int. 1978, 645, 335–350. [Google Scholar]
- Kirkaldy, J.S. Prediction of alloy hardenability from thermodynamic and kinetic data. Metall. Trans. 1973, 4, 2327–2333. [Google Scholar] [CrossRef]
- Miettinen, J. Thermodynamic-kinetic simulation of constrained dendrite growth in steels. Metall. Mater. Trans. B 2000, 31, 365–379. [Google Scholar] [CrossRef]
- Yong, Q.L.; Chen, M.T.; Fei, H.Z. Theoretical calculation for PTT curve of microalloy carbonitride precipitated in ferrite. J. Iron Steel Res. Int. 2006, 18, 30–33. [Google Scholar]
- Yong, Q.L.; Liu, Q.Y.; Liu, S. Theoretical analysis on controlled element of Ostwald ripening process of manganese sulfide in steels. Spec. Steel 2004, 25, 7–9. [Google Scholar]
- Zener, C.S. Grains, phases and interfaces: an interpretation of microstructure. Trans. AIME 1948, 175, 15–51. [Google Scholar]
- Gladman, T. On the theory of the effect of precipitate particles on grain growth in metals. Proc. R. Soc. Lond. Ser. A 1966, 294, 298–309. [Google Scholar] [CrossRef]
- Cui, W.X.; Dai, P.G. Refining and estimation of ferrite grain size during contolled rolling. Metal Sci. Technol. 1983, 2, 1–11. [Google Scholar]
- Magar, V.M.; Shinde, V.B. Application of 7 quality control (7 QC) tools for continuous improvement of manufacturing processes. Int. J. Eng. Res. Gen. Sci. 2014, 2, 364–371. [Google Scholar]
Steel | C | Si | Mn | P | S | Nb | Ti | Al | O |
---|---|---|---|---|---|---|---|---|---|
T1 | 0.13 | 0.29 | 1.27 | 0.02 | 0.002 | 0.002 | 0.012 | 0.025 | 0.0009 |
T2 | 0.11 | 0.35 | 1.48 | 0.018 | 0.007 | 0.003 | 0.014 | 0.023 | 0.0010 |
T3 | 0.13 | 0.31 | 1.41 | 0.016 | 0.015 | 0.003 | 0.015 | 0.022 | 0.0010 |
T4 | 0.14 | 0.29 | 1.37 | 0.015 | 0.038 | 0.002 | 0.014 | 0.022 | 0.0011 |
Sample | w(S)/% | Grain size/μm | Ref |
---|---|---|---|
1 | 0.002 | 8.70 | present work |
2 | 0.004 | 9.80 | [15] |
3 | 0.005 | 11.50 | [15] |
4 | 0.007 | 11.73 | present work |
5 | 0.010 | 13.40 | [15] |
5 | 0.015 | 17.13 | present work |
6 | 0.038 | 18.91 | present work |
Sample | w(S)/% | Re/MPa | Rm/MPa | A/% | Akv/J |
---|---|---|---|---|---|
T1 | 0.002 | 430.3 | 560.4 | 32.2 | 223.6 |
T2 | 0.007 | 370.3 | 510.5 | 34.1 | 169.5 |
T3 | 0.015 | 320.9 | 480.5 | 36.8 | 140.2 |
T4 | 0.038 | 285.1 | 430.7 | 37.8 | 104.7 |
S = 20 ppm | S = 70 ppm | S = 150 ppm | S = 390 ppm | |
---|---|---|---|---|
Tδ(start) | 1508.30 | 1506.40 | 1505.74 | 1504.88 |
Tγ(start) | 1479.78 | 1478.23 | 1471.78 | 1460.35 |
TMnS | 1359.56 | 1460.03 | 1475.39 | 1485.01 |
kinetic Parameters | δ-Ferrite | Austenite |
---|---|---|
Lattice parameter at room temperature/nm | 0.52226 | 0.52226 |
Coefficient of linear/k−1 | 1.81 × 10−5 | 1.81 × 10−5 |
Interfacial free energy of the nucleus-matrix interface σ/(J·m−2) | 0.8157–0.2921 × 10−3·T | 1.7969–0.8097 × 10−3·T |
Diffusion activation energy of Mn atom QMn/J | 3.653240 × 10−19 | 4.334080 × 10−19 |
S Content ppm | Mass Percent | Volume Fraction | Equivalent Diameter | Austenite Grain Size |
---|---|---|---|---|
% | % | μm | prior to deformation μm | |
20 | 0.002842 | 0.005513 | 0.0233 | 71.23 |
70 | 0.016416 | 0.031844 | 0.1008 | 135.08 |
150 | 0.038136 | 0.073979 | 2.8500 | 641.16 |
380 | 0.100597 | 0.195144 | 8.1000 | 694.46 |
Parameter | C | Si | Mn | P | S | Alt |
---|---|---|---|---|---|---|
Standard | ≤0.180 | ≤0.500 | 0.900–1.600 | ≤0.025 | ≤0.025 | ≥0.015 |
Range | 0.080 | 0.270 | 1.270 | 0.011 | 0.002 | 0.020 |
0.170 | 0.460 | 1.500 | 0.028 | 0.022 | 0.042 | |
Average | 0.124 | 0.352 | 1.420 | 0.017 | 0.0064 | 0.026 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Yang, W.; Shi, X.; Zheng, Z.; Liu, S.; Duan, S.; Wu, J.; Guo, H. Effect of Sulfur Content on the Properties and MnS Morphologies of DH36 Structural Steel. Metals 2018, 8, 945. https://doi.org/10.3390/met8110945
Guo J, Yang W, Shi X, Zheng Z, Liu S, Duan S, Wu J, Guo H. Effect of Sulfur Content on the Properties and MnS Morphologies of DH36 Structural Steel. Metals. 2018; 8(11):945. https://doi.org/10.3390/met8110945
Chicago/Turabian StyleGuo, Jing, Wensheng Yang, Xiao Shi, Zhaoming Zheng, Shuai Liu, Shengchao Duan, Jianzhong Wu, and Hanjie Guo. 2018. "Effect of Sulfur Content on the Properties and MnS Morphologies of DH36 Structural Steel" Metals 8, no. 11: 945. https://doi.org/10.3390/met8110945
APA StyleGuo, J., Yang, W., Shi, X., Zheng, Z., Liu, S., Duan, S., Wu, J., & Guo, H. (2018). Effect of Sulfur Content on the Properties and MnS Morphologies of DH36 Structural Steel. Metals, 8(11), 945. https://doi.org/10.3390/met8110945