In Situ Formation of TiB2/Al2O3-Reinforced Fe3Al by Combustion Synthesis with Thermite Reduction
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Self-Propagating Combustion Characteristics and Kinetics
3.2. Phase Constituents and Properties of Synthesized Composites
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Deevi, S.C.; Sikka, V.K. Nickel and iron aluminides: An overview on properties, processing, and applications. Intermetallics 1996, 4, 357–375. [Google Scholar] [CrossRef]
- Stoloff, N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A 1998, 258, 1–14. [Google Scholar] [CrossRef]
- Joslin, D.L.; Easton, D.S.; Liu, C.T.; Babu, S.S.; David, S.A. Processing of Fe3Al and FeAl alloys by reaction synthesis. Intermetallics 1995, 3, 467–481. [Google Scholar] [CrossRef]
- Schneibel, J.H.; Carmichael, C.A.; Specht, E.D.; Subramanian, R. Liquid-phase sintered iron aluminide-ceramic composites. Intermetallics 1997, 5, 61–67. [Google Scholar] [CrossRef]
- Itoi, T.; Mineta, S.; Kimura, H.; Yoshimi, K.; Hirohashi, M. Fabrication and wear properties of Fe3Al-based composites. Intermetallics 2010, 18, 2169–2177. [Google Scholar] [CrossRef]
- Amiriyan, M.; Blais, C.; Savoie, S.; Schulz, R.; Cariépy, M.; Alamdari, H.D. Mechanical behavior and sliding wear studies on iron aluminide coatings reinforced with titanium carbides. Metals 2017, 7, 177. [Google Scholar] [CrossRef]
- Amiriyan, M.; Blais, C.; Savoie, S.; Schulz, R.; Cariépy, M.; Alamdari, H. Trio-mechanical properties of HVOF deposited Fe3Al coatings reinforced with TiB2 particles for wear-resistance applications. Materials 2016, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.M.; Li, H.; Wang, J.H.; Gong, M. High strength and high fracture toughness ceramic-iron aluminide (Fe3Al) composites. Mater. Lett. 2006, 60, 883–887. [Google Scholar] [CrossRef]
- Li, J.; Kwong, F.; Shi, R.; Ng, D.H.L.; Yin, Y. Microstructure and properties of in situ nanometric Al2O3 reinforced α–Fe(Al)–Fe3Al-based composites. Mater. Sci. Eng. A 2009, 526, 50–55. [Google Scholar] [CrossRef]
- Khodaei, M.; Enayati, M.H.; Karimzadeh, F. The structure and mechanical properties of Fe3Al–30 vol. % Al2O3 nanoparticles. J. Alloys Compd. 2009, 488, 134–137. [Google Scholar] [CrossRef]
- Subramanian, R.; MaKamey, C.G.; Buck, L.R.; Schneibel, J.H. Synthesis of iron aluminide–Al2O3 composites by in-situ displacement reactions. Mater. Sci. Eng. A 1997, 239–240, 640–646. [Google Scholar] [CrossRef]
- Sharifitabar, M.; Vahdati Khaki, J.; Haddad Sabzevar, M. Formation mechanism of TiC–Al2O3–Fe3Al composites during self-propagating high-temperature synthesis of TiO2–Al–C–Fe system. Ceram. Int. 2016, 42, 12361–12370. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, X.; Sun, Z.; Jiao, X.; Akhtar, F.; Wang, J.; Feng, P. A novel fabrication strategy for highly porous FeAl/Al2O3 composite by thermal explosion in vacuum. Vacuum 2018, 149, 225–230. [Google Scholar] [CrossRef]
- Merzhanov, A.G. Combustion and explosion processes in physical chemistry and technology of inorganic materials. Russ. Chem. Rev. 2003, 72, 289–310. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Chen, K. Combustion synthesis of refractory and hard materials: A review. Int. J. Refract. Met. Hard Mater. 2013, 39, 90–102. [Google Scholar] [CrossRef]
- Levashov, E.A.; Mukasyan, A.S.; Rogachev, A.S.; Shtansky, D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2017, 62, 203–239. [Google Scholar] [CrossRef]
- Yeh, C.L.; Peng, J.A. Combustion synthesis of MoSi2–Al2O3 composites from thermite-based reagents. Metals 2016, 6, 235. [Google Scholar] [CrossRef]
- Yeh, C.L.; Chong, M.H. Effects of B4C and BN additions on formation of NbB2–Al2O3 composites from reduction-based Combustion synthesis. Ceram. Int. 2017, 43, 7560–7564. [Google Scholar] [CrossRef]
- Yeh, C.L.; Sung, W.Y. Combustion synthesis of Ni3Al intermetallic compound in self-propagating mode. J. Alloys Compd. 2004, 384, 181–191. [Google Scholar] [CrossRef]
- Yeh, C.L.; Su, S.H. In situ formation of TiAl-TiB2 composite by SHS. J. Alloys Compd. 2006, 407, 150–156. [Google Scholar] [CrossRef]
- Yeh, C.L.; Ke, C.Y.; Chen, Y.C. In situ formation of TiB2/TiC and TiB2/TiN reinforced NiAl by self-propagating combustion synthesis. Vacuum 2018, 151, 185–188. [Google Scholar] [CrossRef]
- Young, R.A.; Wiles, D.B. Profile shape functions in Rietveld refinements. J. Appl. Cryst. 1982, 15, 430–438. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent developments of the program FULLPROF. Newsl. Comm. Powder Diffr. 2001, 26, 12–19. [Google Scholar]
- Evans, A.G.; Charles, E.A. Fracture toughness determinations by indentation. J. Am. Ceram. Soc. 1976, 59, 371–372. [Google Scholar] [CrossRef]
- Yeh, C.L.; Lin, J.Z. Combustion synthesis of Cr-Al and Cr-Si intermetallics with Al2O3 additions from Cr2O3-Al and Cr2O3-Al-Si reaction systems. Intermetallics 2013, 33, 126–133. [Google Scholar] [CrossRef]
- Wang, L.L.; Munir, Z.A.; Maximov, Y.M. Thermite reactions: Their utilization in the synthesis and processing of materials. J. Mater. Sci. 1993, 28, 3693–3708. [Google Scholar] [CrossRef]
- Binnewies, M.; Milke, E. Thermochemical Data of Elements and Compounds; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002. [Google Scholar]
- Bertolino, N.; Anselmi-Tamburini, U.; Maglia, F.; Spinolo, G.; Munir, Z.A. Combustion synthesis of Zr-Si intermetallic compounds. J. Alloys Compd. 1999, 288, 238–248. [Google Scholar] [CrossRef]
- Rafiei, M.; Enayati, M.H.; Karimzadeh, F. Kinetic analysis of thermite reaction in Al–Ti–Fe2O3 system to produce (Fe,Ti)3Al–Al2O3 nanocomposite. Powder Technol. 2014, 253, 553–560. [Google Scholar] [CrossRef]
- Mighell, A.D.; Karen, V.L. NIST crystallographic databases for research and analysis. J. Res. Natl. Inst. Stand. Technol. 1996, 101, 273–280. [Google Scholar] [CrossRef] [PubMed]
Composites | Components | a (Å) | c (Å) |
---|---|---|---|
Reaction (1) with x = 0.8 | Fe3Al | 5.774 | - |
TiB2 | 3.027 | 3.230 | |
Al2O3 | 4.764 | 13.002 | |
Reaction (2) with y = 1.5 | Fe3Al | 5.786 | - |
TiB2 | 3.024 | 3.226 | |
Al2O3 | 4.768 | 13.005 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, C.-L.; Ke, C.-Y. In Situ Formation of TiB2/Al2O3-Reinforced Fe3Al by Combustion Synthesis with Thermite Reduction. Metals 2018, 8, 288. https://doi.org/10.3390/met8040288
Yeh C-L, Ke C-Y. In Situ Formation of TiB2/Al2O3-Reinforced Fe3Al by Combustion Synthesis with Thermite Reduction. Metals. 2018; 8(4):288. https://doi.org/10.3390/met8040288
Chicago/Turabian StyleYeh, Chun-Liang, and Chih-Yao Ke. 2018. "In Situ Formation of TiB2/Al2O3-Reinforced Fe3Al by Combustion Synthesis with Thermite Reduction" Metals 8, no. 4: 288. https://doi.org/10.3390/met8040288
APA StyleYeh, C. -L., & Ke, C. -Y. (2018). In Situ Formation of TiB2/Al2O3-Reinforced Fe3Al by Combustion Synthesis with Thermite Reduction. Metals, 8(4), 288. https://doi.org/10.3390/met8040288