Dissolution of M23C6 and New Phase Re-Precipitation in Fe Ion-Irradiated RAFM Steel
Abstract
:1. Introduction
2. Experimental
2.1. Material Preparation
2.2. Irradiation Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, Q.Y. Status and improvement of CLAM for nuclear application. Nucl. Fusion 2017, 57, 086042. [Google Scholar] [CrossRef]
- Yu, J.N.; Huang, Q.Y.; Wan, F.R. Research and development on the China low activation martensitic steel (CLAM). J. Nucl. Mater. 2007, 367, 97–101. [Google Scholar] [CrossRef]
- Yin, F.S.; Jung, W.S.; Chung, S.H. Microstructure and creep rupture characteristics of an ultra-low carbon ferritic/martensitic heat-resistant steel. Scr. Mater. 2007, 57, 469–472. [Google Scholar] [CrossRef]
- Li, Q.S.; Shen, Y.Z.; Zhu, J.; Huang, X.; Shang, Z.X. Evaluation of Irradiation Hardening of P92 Steel under Ar Ion Irradiation. Metals 2018, 8, 94. [Google Scholar] [CrossRef]
- Di Martino, S.F.; Riddle, N.B.; Faulkner, R.G. Controlling the ductile to brittle transition in Fe-9%Cr ODS steels. J. Nucl. Mater. 2013, 442, S124–S132. [Google Scholar] [CrossRef]
- Yan, B.Y.; Liu, Y.C.; Wang, Z.J.; Liu, C.X.; Si, Y.H.; Li, H.J.; Yu, J.X. The Effect of Precipitate Evolution on Austenite Grain Growth in RAFM Steel. Materials 2017, 10, 1017. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Liu, G.Q.; Hu, B.F.; Wang, J.S.; Ma, W.B. Microstructure Stability of V and Ta Microalloyed 12%Cr Reduced Activation Ferrite/Martensite Steel during Long-term Aging at 650 °C. J. Mater. Sci. Technol. 2015, 31, 311–319. [Google Scholar] [CrossRef]
- Duan, Z.X.; Pei, W.; Gong, X.B.; Chen, H. Superplasticity of Annealed H13 Steel. Materials 2017, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.L.; Wang, Z.G.; Yao, C.F.; Sun, J.R.; Li, Y.F.; Wei, K.F.; Zhu, Y.B.; Pang, L.L.; Cui, M.H.; Wang, J.; et al. The sink effect of the second-phase particle on the cavity swelling in RAFM steel under Ar-ion irradiation at 773 K. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 307, 512–515. [Google Scholar] [CrossRef]
- Tan, L.; Katoh, Y.; Snead, L.L. Stability of the strengthening nanoprecipitates in reduced activation ferritic steels under Fe2+ ion irradiation. J. Nucl. Mater. 2014, 445, 104–110. [Google Scholar] [CrossRef]
- Tanigawa, H.; Sakasegawa, H.; Ogiwara, H.; Kishimoto, H.; Kohyama, A. Radiation induced phase instability of precipitates in reduced-activation ferritic/martensitic steels. J. Nucl. Mater. 2007, 367, 132–136. [Google Scholar] [CrossRef]
- Dong, Q.S.; Yao, Z.W.; Wang, Q.; Yu, H.B.; Kirk, M.A.; Daymond, M.R. Precipitate Stability in a Zr-2.5Nb-0.5Cu Alloy under Heavy Ion Irradiation. Metals 2017, 7, 287. [Google Scholar] [CrossRef]
- Rowcliffe, A.F.; Lee, E.H. High-Temperature Radiation-Damage Phenomena in Complex Alloys. J. Nucl. Mater. 1982, 108, 306–318. [Google Scholar] [CrossRef]
- Zhang, C.H.; Chen, K.Q.; Wang, Y.S.; Sun, J.G.; Hu, B.F.; Jin, Y.F.; Hou, M.D.; Liu, C.L.; Sun, Y.M.; Han, J.; et al. Microstructural changes in a low-activation Fe-Cr-Mn alloy irradiated with 92 MeV Ar ions at 450 °C. J. Nucl. Mater. 2000, 283, 259–262. [Google Scholar] [CrossRef]
- Klueh, R.L.; Alexander, D.J.; Rieth, M. The effect of tantalum on the mechanical properties of a 9Cr-2W-0.25V-0.07Ta-0.1C steel. J. Nucl. Mater. 1999, 273, 146–154. [Google Scholar] [CrossRef]
- Zhao, M.Z.; Liu, P.P.; Zhu, Y.M.; Wan, F.R.; He, Z.B.; Zhan, Q. Effects of hydrogen isotopes in the irradiation damage of CLAM steel. J. Nucl. Mater. 2015, 466, 491–495. [Google Scholar] [CrossRef]
- Dai, Y.; Bauer, G.S.; Carsughi, F.; Ullmaier, H.; Maloy, S.A.; Sommer, W.F. Microstructure in Martensitic Steel DIN 1.4926 after 800 MeV proton irradiation. J. Nucl. Mater. 1999, 265, 203–207. [Google Scholar] [CrossRef]
- Dai, Y.; Carsughi, F.; Sommer, W.F.; Bauer, G.S.; Ullmaier, H. Tensile properties and microstructure of martensitic steel DIN 1.4926 after 800 MeV proton irradiation. J. Nucl. Mater. 2000, 276, 289–294. [Google Scholar] [CrossRef]
- Dai, Y.; Maloy, S.A.; Bauer, G.S.; Sommer, W.F. Mechanical properties and microstructure in low-activation martensitic steels F82H and Optimax after 800-MeV proton irradiation. J. Nucl. Mater. 2000, 283, 513–517. [Google Scholar] [CrossRef]
- Sencer, B.H.; Garner, F.A.; Gelles, D.S.; Bond, G.M.; Maloy, S.A. Structural evolution in modified 9Cr-1Mo ferritic/martensitic steel irradiated with mixed high-energy proton and neutron spectra at low temperatures. J. Nucl. Mater. 2002, 307, 266–271. [Google Scholar] [CrossRef]
- Ghidelli, M.; Sebastiani, M.; Johanns, K.E.; Pharr, G.M. Effects of indenter angle on micro-scale fracture toughness measurement by pillar splitting. J. Am. Ceram. Soc. 2017, 100, 5731–5738. [Google Scholar] [CrossRef]
- Jin, S.X.; Guo, L.P.; Yang, Z.; Fu, D.J.; Liu, C.S.; Tang, R.; Liu, F.H.; Qiao, Y.X.; Zhang, H.D. Microstructural evolution of P92 ferritic/martensitic steel under argon ion irradiation. Mater. Charact. 2011, 62, 136–142. [Google Scholar] [CrossRef]
- Jin, S.X.; Guo, L.P.; Li, T.C.; Chen, J.H.; Yang, Z.; Luo, F.F.; Tang, R.; Qiao, Y.X.; Liu, F.H. Microstructural evolution of P92 ferritic/martensitic steel under Ar+ ion irradiation at elevated temperature. Mater. Charact. 2012, 68, 63–70. [Google Scholar] [CrossRef]
- Kai, J.J.; Kulcinski, G.L. 14 MeV nickel-ion irradiated HT-9 ferritic steel with and without helium pre-implantation. J. Nucl. Mater. 1990, 175, 227–236. [Google Scholar] [CrossRef]
- Maziasz, P.J.; Klueh, R.L.; Vitek, J.M. Helium Effects on Void Formation in 9Cr-1MoVNB and 12Cr-1MoVW Irradiated in HFIR. J. Nucl. Mater. 1986, 141, 929–937. [Google Scholar] [CrossRef]
- Chen, J.H.; Guo, L.P.; Liu, C.X.; Luo, F.F.; Li, T.C.; Zheng, Z.C.; Jin, S.X.; Yang, Z. Enhancement of room temperature ferromagnetism in Mn-implanted Si by He implantation. Appl. Phys. Lett. 2012, 101, 132413. [Google Scholar] [CrossRef]
- Fang, C.M.; van Huis, M.A.; Sluiter, M.H.F. Formation, structure and magnetism of the γ-(Fe,M)23C6 (M = Cr, Ni) phases: A first-principles study. Acta Mater. 2016, 103, 273–279. [Google Scholar] [CrossRef]
- Klimiankou, M.; Lindau, R.; Moslang, A. Direct correlation between morphology of (Fe,Cr)23C6precipitates and impact behavior of ODS steels. J. Nucl. Mater. 2007, 367, 173–178. [Google Scholar] [CrossRef]
- Lu, Z.; Faulkner, R.G.; Was, G.; Wirth, B.D. Irradiation-induced grain boundary chromium microchemistry in high alloy ferritic steels. Scr. Mater. 2008, 58, 878–881. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Feng, H.; Li, H.B.; Zhu, H.C.; Zhang, S.C.; Zhang, B.B.; Han, Y.; Zhang, T.; Xu, D.K. Relationship between Microstructure and Corrosion Behavior of Martensitic High Nitrogen Stainless Steel 30Cr15Mo1N at Different Austenitizing Temperatures. Materials 2017, 10, 861. [Google Scholar] [CrossRef] [PubMed]
- Tanigawa, H.; Sakasegawa, H.; Klueh, R.L. Irradiation effects on precipitation in reduced-activation ferritic/martensitic steels. Mater. Trans. 2005, 46, 469–474. [Google Scholar] [CrossRef]
- Kano, S.; Yang, F.; Shen, J.; Zhao, Z.; McGrady, J.; Hamaguchi, D.; Ando, M.; Tanigawa, H.; Hiroaki, A. Investigation of instability of M23C6 particles in F82H steel under electron and ion irradiation conditions. J. Nucl. Mater. 2018, 502, 263–269. [Google Scholar] [CrossRef]
- Inoue, A.; Masumoto, T. Carbide Reactions (M3C-M7C3-M23C6-M6C) during Tempering of Rapidly Solidified High-Carbon Cr-W and Cr-Mo Steels. Metall. Trans. A 1980, 11, 739–747. [Google Scholar] [CrossRef]
- Wang, W.; Mao, X.D.; Liu, S.J.; Xu, G.; Wang, B. Microstructure evolution and toughness degeneration of 9Cr martensitic steel after aging at 550 A degrees C for 20000 h. J. Mater. Sci. 2018, 53, 4574–4581. [Google Scholar] [CrossRef]
- Shiba, K.; Tanigawa, H.; Hirose, T.; Sakasegawa, H.; Jitsukawa, S. Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system. Fusion Eng. Des. 2011, 86, 2895–2899. [Google Scholar] [CrossRef]
Fe | C | Cr | W | V | Mn | Si | P | S |
---|---|---|---|---|---|---|---|---|
Bal. | 0.088 | 9.24 | 2.29 | 0.25 | 0.49 | 0.25 | 0.0059 | 0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Jin, S.; Song, L.; Zhang, W.; You, L.; Guo, L. Dissolution of M23C6 and New Phase Re-Precipitation in Fe Ion-Irradiated RAFM Steel. Metals 2018, 8, 349. https://doi.org/10.3390/met8050349
Yang Z, Jin S, Song L, Zhang W, You L, Guo L. Dissolution of M23C6 and New Phase Re-Precipitation in Fe Ion-Irradiated RAFM Steel. Metals. 2018; 8(5):349. https://doi.org/10.3390/met8050349
Chicago/Turabian StyleYang, Zheng, Shuoxue Jin, Ligang Song, Weiping Zhang, Li You, and Liping Guo. 2018. "Dissolution of M23C6 and New Phase Re-Precipitation in Fe Ion-Irradiated RAFM Steel" Metals 8, no. 5: 349. https://doi.org/10.3390/met8050349
APA StyleYang, Z., Jin, S., Song, L., Zhang, W., You, L., & Guo, L. (2018). Dissolution of M23C6 and New Phase Re-Precipitation in Fe Ion-Irradiated RAFM Steel. Metals, 8(5), 349. https://doi.org/10.3390/met8050349