Effect of Rolling Reduction on Microstructure and Property of Ultrafine Grained Low-Carbon Steel Processed by Cryorolling Martensite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure Evolution
3.2. Mechanical Property
3.3. Fracture Morphology
4. Conclusions
- (1)
- There are peak value and valley value in the strength and grain size of ferrite with the increase of reduction from 50% to 80%, respectively. The further growth of recrystallization ferrite grains at 80% is attributed to the secondary recrystallization that was activated by heavier accumulated distortion energy at large reduction.
- (2)
- The distribution of ferrite grains becomes more uniform with increasing reduction from 50% to 70%. The amount of lamellar dislocation cell substructure increases with the reduction due to the stronger deformation resistance as well as the inhabitation of atomic diffusion and thermal activation recovery process at liquid nitrogen temperature.
- (3)
- Ultrafine-grain structured steel is manufactured by cryorolling and the subsequent annealing of martensite. Optimal balance between strength (978.1 MPa) and adequate ductility (12.3%) is obtained in the specimen that was cryorolled by 70% reduction and annealed at 500 °C for 30 min. The smallest mean ferrite size is about 132.0 nm.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eskandari, M.; Najafizadeh, A.; Kermanpur, A.; Karimi, M. Potential application of nanocrystalline 301 austenitic stainless steel in lightweight vehicle structures. Mater. Des. 2009, 30, 3869–3872. [Google Scholar] [CrossRef]
- Koch, C.C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 2003, 49, 657–662. [Google Scholar] [CrossRef]
- Raabe, D.; Ponge, D.; Dmitrieva, O.; Sander, B. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility. Scr. Mater. 2009, 60, 1141–1144. [Google Scholar] [CrossRef]
- Chen, X.H.; Lu, J.; Lu, L.; Lu, K. Tensile properties of a nanocrystalline 316 L austenitic stainless steel. Scr. Mater. 2005, 52, 1039–1044. [Google Scholar] [CrossRef]
- Lu, K. Making strong nanomaterials ductile with gradients. Science 2014, 345, 1455–1457. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, X.Y.; Lu, K. Enhanced thermal stability of nanograined metals below a critical grain size. Science 2018, 6388, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.; Lu, L.; Asaro, R.J.; Hosson, J.T.M.D.; Ma, E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 2007, 55, 4041–4065. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.J.; Park, N.; Tian, Y.Z.; Chen, S.; Shibata, A.; Tsuji, N. Novel thermomechanical processing methods for achieving ultragrain refinement of low-carbon steel without heavy plastic deformation. Mater. Res. Lett. 2017, 5, 61–68. [Google Scholar] [CrossRef]
- Tsuji, N.; Ueji, R.; Minamino, Y. Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process. Scr. Mater. 2002, 47, 69–76. [Google Scholar] [CrossRef]
- Wang, B.F.; Sun, J.Y.; Zou, J.D.; Vincent, S.; Li, J. Mechanical responses, texture and microstructural evolution of high purity aluminum deformed by equal channel angular pressing. J. Cent. South Univ. 2015, 22, 3698–3704. [Google Scholar] [CrossRef]
- Matsybara, K.; Miyahara, Y.; Horita, Z.; Langdon, T.G. Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Mater. 2003, 51, 3073–3084. [Google Scholar] [CrossRef]
- Shin, D.H.; Kim, B.C.; Park, K.; Kim, Y.S. Microstructure evolution in a commercial low carbon steel by equal channel angular pressing. Acta Mater. 2000, 48, 2247–2255. [Google Scholar] [CrossRef]
- Tsuji, N.; Shiotsuki, K.; Saito, Y. Super plasticity of ultra-fine grained Al-Mg alloy produced by accumulative roll-bonding. Mater. Trans. JIM 1999, 40, 765–771. [Google Scholar] [CrossRef]
- Tsuji, N.; Ueji, R.; Saito, Y. Ultra-fine grains in ultralow carbon IF steel highly strained by ARB. Mater. Jpn. 2000, 39, 961–966. (In Japanese) [Google Scholar] [CrossRef]
- Saito, Y.; Utsunomiya, H.; Tsuji, N.; Sakai, T. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999, 47, 579–583. [Google Scholar] [CrossRef]
- Belyakov, A.; Sakika, Y.; Hara, T.; Kimura, Y.; Tsuzaki, K. Annealing behavior of submicrocrystalline oxide-bearing iron produced by mechanical alloying. Metall. Mater. Trans. A 2003, 34, 131–138. [Google Scholar] [CrossRef]
- Takaki, S.; Kawasaki, K.; Kimura, Y. Ultrafine Grained Materials; Mishra, R.S., Ed.; The Minerals, Metals & Materials Society (TMS): Warrendale, PA, USA, 2000; pp. 247–255. [Google Scholar]
- Sabbaghianrad, S.; Kawasaki, M.; Langdon, T.G. Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion. J. Mater. Sci. 2012, 47, 7789–7795. [Google Scholar] [CrossRef]
- Horita, Z.; Smith, D.; Furukwa, M.; Nnemoto, M.; Valiev, R.Z.; Langdon, T.G. An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J. Mater. Res. 1996, 11, 1880–1890. [Google Scholar] [CrossRef]
- Ivanisenko, Y.; Wunderlich, R.K.; Valiev, R.Z.; Fecht, H.J. Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation. Scr. Mater. 2003, 49, 947–952. [Google Scholar] [CrossRef]
- Tsuji, N.; Ueji, R.; Minamino, Y.; Saito, Y. A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property. Scr. Mater. 2002, 46, 305–310. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Alishahi, M.; Najafizadeh, A.; Kermanpur, A. The improvement of ductility in nano/ultrafine grained low carbon steels via high temperature short time annealing. Mater. Lett. 2012, 74, 206–208. [Google Scholar] [CrossRef]
- Ashrafi, H.; Najafizadeh, A. Fabrication of the ultrafine grained low carbon steel by cold compression and annealing of martensite. Trans. Indian Inst. Met. 2016, 8, 1467–1473. [Google Scholar] [CrossRef]
- Ueji, R.; Tsuji, N.; Minamino, Y.; Koizumi, Y. Ultragrain refinement of plain low carbon steel by cold rolling and annealing of martensite. Acta Mater. 2002, 50, 4177–4189. [Google Scholar] [CrossRef]
- Bao, Y.Z.; Adachi, Y.; Toomine, Y.; Xu, P.G.; Suzuki, T.; Tomota, Y. Dynamic recrystallization by rapid heating followed by compression for a 17Ni-0.2C martensite steel. Scr. Mater. 2005, 53, 1471–1476. [Google Scholar] [CrossRef]
- Tian, J.Y.; Xu, G.; Liang, W.C.; Yuan, Q. Effect of annealing on the microstructure and mechanical properties of a low-carbon steel with ultrafine grains. Metallogr. Microstruct. Anal. 2017, 6, 233–239. [Google Scholar] [CrossRef]
- Li, X.; Jing, T.F.; Lu, M.M.; Zhang, J.W. Microstructure and mechanical properties of ultrafine lath-shaped low carbon steel. J. Mater. Eng. Perform. 2012, 21, 1496–1499. [Google Scholar] [CrossRef]
- Hamad, K.; Ko, Y.G. Annealing characteristics of ultrafine grained low-carbon steel processed by differential speed rolling method. Metall. Mater. Trans. A 2016, 47A, 2319–2334. [Google Scholar] [CrossRef]
- Alizamini, H.A.; Militzer, M.; Poole, W.J. A novel technique for developing bimodal grain size distributions in low carbon steels. Scr. Mater. 2007, 57, 1065–1068. [Google Scholar] [CrossRef]
- Wang, T.S.; Zhang, F.C.; Zhang, M.; Lv, B. A novel process to obtain ultrafine-grained low carbon steel with bimodal grain size distribution for potentially improving ductility. Metall. Mater. Trans. A 2008, 485, 456–460. [Google Scholar] [CrossRef]
- Hamzeh, M.; Kermanpur, A.; Najafizadeh, A. Fabrication of the ultrafine-grained ferrite with good resistance to grain grow than devaluation of its tensile properties. Mater. Sci. Eng. A 2014, 593, 24–30. [Google Scholar] [CrossRef]
- Dong, Z.Q.; Jiang, B.; Mei, Z.; Zhang, C.L.; Zhou, L.Y.; Liu, Y.Z. Effect of carbide distribution on the grain refinement in the steel for large-size bearing ring. Steel Res. Int. 2016, 87, 745–751. [Google Scholar] [CrossRef]
- Kapoor, R.; Nasser, S.N. Determination of temperature rise during high strain rate deformation. Mech. Mater. 1998, 27, 1–12. [Google Scholar] [CrossRef]
- Olyaeefar, B.; Kandjani, S.A.; Asgari, A. Classical modeling of grain size and boundary effects in polycrystalline perovskite solar cells. Sol. Energy Mater. Sol. Cells 2018, 180, 76–82. [Google Scholar] [CrossRef]
- Wang, Y.M.; Chen, M.W.; Zhou, F.H.; Ma, En. High tensile ductility in a nanostructured metal. Nature 2002, 419, 912–914. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Xu, G.; Tian, J.Y.; Liang, W.C. The recrystallization behavior in ultrafine-grained structure steel fabricated by cold rolling and annealing. Arab. J. Sci. Eng. 2017, 42, 4771–4777. [Google Scholar] [CrossRef]
- Xiong, Y.; Yue, Y.; Lu, Y.; He, T.T.; Fan, M.X.; Ren, F.Z.; Cao, W. Cryorolling impacts on microstructure and mechanical properties of AISI 316 LN austenitic stainless steel. Mater. Sci. Eng. A 2018, 709, 270–276. [Google Scholar] [CrossRef]
- Xiong, Y.; He, T.T.; Wang, J.B.; Lu, Y.; Chen, L.F.; Ren, F.Z.; Liu, Y.L.; Volinsky, A.A. Cryorolling effect on microstructure and mechanical properties of Fe-25Cr-20Ni austenitic stainless steel. Mater. Des. 2015, 88, 398–405. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Q.; Xu, G.; Liu, S.; Liu, M.; Hu, H.; Li, G. Effect of Rolling Reduction on Microstructure and Property of Ultrafine Grained Low-Carbon Steel Processed by Cryorolling Martensite. Metals 2018, 8, 518. https://doi.org/10.3390/met8070518
Yuan Q, Xu G, Liu S, Liu M, Hu H, Li G. Effect of Rolling Reduction on Microstructure and Property of Ultrafine Grained Low-Carbon Steel Processed by Cryorolling Martensite. Metals. 2018; 8(7):518. https://doi.org/10.3390/met8070518
Chicago/Turabian StyleYuan, Qing, Guang Xu, Sheng Liu, Man Liu, Haijiang Hu, and Guangqiang Li. 2018. "Effect of Rolling Reduction on Microstructure and Property of Ultrafine Grained Low-Carbon Steel Processed by Cryorolling Martensite" Metals 8, no. 7: 518. https://doi.org/10.3390/met8070518