Characterization of a Nanocrystalline Structure Formed by Crystal Lattice Transformation in a Bulk Steel Material
Abstract
:1. Introduction
2. Experimental Details
2.1. Sample Preparation
2.2. Characterization Techniques
3. Results and Discussion
4. Conclusions
- (1)
- This nanocrystalline structure had microscale length and height and nanoscale width; the strips exhibited a plate-like structure in three-dimensional space. We named it “nanoplate”.
- (2)
- This nanocrystalline structure had α-Fe crystal lattice and presented edge dislocations.
- (3)
- There were unique boundaries between the nanocrystalline structures and the parent phase which consisted of three areas. These boundaries may help the nanocrystalline structure maintain a nanoscale size.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gleiter, H. Nanostructured Materials: Basic Concepts and Microstructure. Acta Mater. 2004, 35, 1–29. [Google Scholar] [CrossRef]
- Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Liao, X.Z.; Cheng, S.; Ma, E.; Zhu, Y.T. Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys. Adv. Mater. 2006, 18, 2280–2283. [Google Scholar] [CrossRef]
- Vernieres, J.; Steinhauer, S.; Zhao, J.; Chapelle, A.; Menini, P.; Dufour, N.; Djurabekova, F.; Grammatikopoulos, P.; Sowwan, M. Gas Phase Synthesis of Multifunctional Fe-Based Nanocubes. Adv. Funct. Mater. 2017, 27, 1605328. [Google Scholar] [CrossRef]
- Xia, F.F.; Jia, W.C.; Ma, C.Y.; Yang, R.; Wang, Y.; Potts, M. Synthesis and characterization of Ni-doped TiN thin films deposited by jet electrodeposition. Appl. Surf. Sci. 2018, 434, 228–233. [Google Scholar] [CrossRef]
- Mukherjee, N.; Show, B.; Maji, S.K.; Madhu, U.; Bhar, S.K.; Mitra, B.C.; Khan, G.G.; Mondal, A. CuO nano-whiskers: Electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater. Lett. 2011, 65, 3248–3250. [Google Scholar] [CrossRef]
- Wang, K.; Wu, H.; Ge, M.; Xi, W.; Luo, J. Exponential surface melting of Cu nanoparticles observed by in-situ TEM. Mater. Charact. 2018, 145, 246–249. [Google Scholar] [CrossRef]
- Mielnik-Pyszczorski, A.; Gawarecki, K.; Gawełczyk, M.; Machnikowski1, P. Dominant role of the shear strain induced admixture in spin-flip processes in self-assembled quantum dots. Phys. Rev. B 2018, 97, 245313. [Google Scholar] [CrossRef]
- Brunatova, T.; Matej, Z.; Oleynikov, P.; Vesely, J.; Danis, S.; Popelkova, D.; Kuzel, R. Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating. Mater. Charact. 2014, 98, 26–36. [Google Scholar] [CrossRef]
- Gracia Jiménez, J.M.; Cembrero, J.; Mollar, M.; Marí, B. Photoluminescent properties of electrochemically synthetized ZnO nanotubes. Mater. Charact. 2016, 119, 152–158. [Google Scholar] [CrossRef]
- Yu, B.; Leung, K.M.; Guo, Q.; Lau, W.M.; Yang, J. Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology 2011, 22, 115603. [Google Scholar] [CrossRef] [PubMed]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803. [Google Scholar] [CrossRef]
- Liu, X. Microstructures of Nanocrystalline Materials Synthesized by Amorphous Crystallization. Mater. Trans. JIM 1998, 39, 783–794. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Xu, H.; Bai, Q.; Dong, Y. Fe-Zr-Nd-Y-B permanent magnet derived from crystallization of bulk amorphous alloy. Appl. Phys. Lett. 2007, 91, 252501. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Langdon, T.G. The Fundamentals of Nanostructured Materials Processed by Severe Plastic Deformation. JOM 2004, 56, 58–63. [Google Scholar] [CrossRef]
- Dinda, G.; Rösner, H.; Wilde, G. Synthesis of bulk nanostructured Ni, Ti and Zr by repeated cold-rolling. Scr. Mater. 2005, 52, 577–582. [Google Scholar] [CrossRef]
- Sun, H.Q.; Shi, Y.N.; Zhang, M.X.; Lu, K. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Acta Mater. 2007, 55, 975–982. [Google Scholar] [CrossRef]
- Hilšer, O.; Rusz, S.; Szkandera, P.; Čížek, L.; Kraus, M.; Džugan, J.; Maziarz, W. Study of the Microstructure, Tensile Properties and Hardness of AZ61 Magnesium Alloy Subjected to Severe Plastic Deformation. Metals 2018, 8, 776. [Google Scholar] [CrossRef]
- Li, Y.S.; Tao, N.R.; Lu, K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 2008, 56, 230–241. [Google Scholar] [CrossRef]
- Yokota, T.; Mateo, C.G.I.; Bhadeshia, H.K.D.H. Formation of Nanostructured Steels by Phase Transformation. Scr. Mater. 2004, 51, 767–770. [Google Scholar] [CrossRef]
- Caballero, F.G.; Bhadeshia, H.K.D.H. Very Strong Bainite. Curr. Opin. Solid State Mater. Sci. 2004, 8, 251–257. [Google Scholar] [CrossRef]
- Bhadeshia, H.K. The first bulk nanostructured metal. Sci. Technol. Adv. Mater. 2013, 14, 014202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sourmail, T.; Smanio, V. Low temperature kinetics of bainite formation in high carbon steels. Acta Mater. 2013, 61, 2639–2648. [Google Scholar] [CrossRef]
- Ungár, T.; Gubicza, J.; Hanák, P.; Alexandrov, I. Densities and character of dislocations and size-distribution of subgrains in deformed metals by X-ray diffraction profile analysis. Mater. Sci. Eng. A 2001, 319–321, 274–278. [Google Scholar] [CrossRef]
- Ungár, T.; Gubicza, J.; Ribárik, G.; Borbely, A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 2001, 34, 298–310. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, A.; Singh, A. Effect of prior austenite grain size on the morphology of nano-bainitic steels. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2018, 49A, 1348–1354. [Google Scholar] [CrossRef]
- Hulme-Smith, C.N.; Peet, M.J.; Lonardelli, I.; Dippel, A.C.; Bhadeshia, H.K.D.H. Further evidence of tetragonality in bainitic ferrite. Mater. Sci. Technol. 2015, 31, 254–256. [Google Scholar] [CrossRef]
- Edalati, K.; Horita, Z.; Valiev, R.Z. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy. Sci. Rep. 2018, 8, 8. [Google Scholar] [CrossRef]
- Hughes, D.A.; Hansen, N. Exploring the Limit of Dislocation Based Plasticity in Nanostructured Metals. Phys. Rev. Lett. 2014, 112, 5. [Google Scholar] [CrossRef]
- Chookajorn, T.; Murdoch, H.A.; Schuh, C.A. Design of stable nanocrystalline alloys. Science 2012, 337, 951–954. [Google Scholar] [CrossRef]
- Liu, X.C.; Zhang, H.W.; Lu, K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 2013, 342, 337–340. [Google Scholar] [CrossRef]
- Hu, J.; Shi, Y.N.; Sauvage, X.; Sha, G.; Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 2017, 355, 1292–1296. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.Y.; Lu, K. Enhanced thermal stability of nanograined metals below a critical grain size. Science 2018, 360, 526–529. [Google Scholar] [CrossRef]
- Liu, Q.; Shen, Y.; Wu, Q.; Gao, B.; Zhang, X. Research on nucleation mechanism of the nanoscale bainite ferrite in a high carbon steel Fe–0.88C–1.35Si–1.03Cr–0.43Mn. J. Mater. Res. 2016, 31, 1510–1517. [Google Scholar] [CrossRef]
Elements | C | Si | Mn | Cr | Ni | Fe |
---|---|---|---|---|---|---|
(wt%) | 0.99 | 1.47 | 0.44 | 1.04 | 0.03 | Bal |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, T.; Liu, Q.; Zhang, X.; Zhang, D.; Li, J. Characterization of a Nanocrystalline Structure Formed by Crystal Lattice Transformation in a Bulk Steel Material. Metals 2019, 9, 3. https://doi.org/10.3390/met9010003
Cui T, Liu Q, Zhang X, Zhang D, Li J. Characterization of a Nanocrystalline Structure Formed by Crystal Lattice Transformation in a Bulk Steel Material. Metals. 2019; 9(1):3. https://doi.org/10.3390/met9010003
Chicago/Turabian StyleCui, Tianyu, Qingsuo Liu, Xin Zhang, Dawei Zhang, and Jinman Li. 2019. "Characterization of a Nanocrystalline Structure Formed by Crystal Lattice Transformation in a Bulk Steel Material" Metals 9, no. 1: 3. https://doi.org/10.3390/met9010003
APA StyleCui, T., Liu, Q., Zhang, X., Zhang, D., & Li, J. (2019). Characterization of a Nanocrystalline Structure Formed by Crystal Lattice Transformation in a Bulk Steel Material. Metals, 9(1), 3. https://doi.org/10.3390/met9010003