Prediction of Mechanical Properties of Graphene Oxide Reinforced Aluminum Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finite Element Modeling of GO/Al Composite
2.1.1. Assumptions
- The Al particles were considered spherical and equisized
- GO reinforcement is uniformly distributed on to the Al particles
- No interfacial compounds formed in between GO and Al particles
- The matrix and reinforcement are isotropic materials
- Effect of porosity is neglected
2.1.2. Boundary Conditions
- The displacement degrees of freedom are constrained at 0.Ux = 0 at X = 0, Uy = 0 at Y = 0, and Uz = 0 at Z = 0
- The rotational degrees of freedom are constrained at 0.ωx = 0 at X = 0, ωy = 0 at Y = 0, and ωz = 0 at Z = 0
- A compressive load of 2.5 N is applied in Y-direction at Y = 140 µm
- Fixed joints within built constrained equations is used as a contact in between the particles
2.1.3. Mesh Convergence of GO/Al Composite
2.2. Analytical Modeling of GO/Al Composite
3. Results
3.1. Effect of GO Addition on Stress Distribution and Young’s Modulus of GO/Al Composites
3.2. Effect of GO Layers on Stress Distribution of GO/Al Composites
3.3. Effect of GO Layers on Young’s Modulus of GO/Al Composites
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, C.G.; Park, S.; Ruoff, R.S.; Dodabalapur, A. Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl. Phys. Lett. 2009, 95, 3–5. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Xia, F.; Mueller, T.; Lin, Y.; Valdes-garcia, A. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasari, B.L.; Nouri, J.M.; Brabazon, D.; Naher, S. Graphene and derivatives – Synthesis techniques, properties and their energy applications. Energy 2017, 140, 766–778. [Google Scholar] [CrossRef]
- Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3, 3884–3890. [Google Scholar] [CrossRef] [PubMed]
- Sreenivasulu, B.; Ramji, B.R.; Nagaral, M. A Review on Graphene Reinforced Polymer Matrix Composites. Mater. Today Proc. 2018, 5, 2419–2428. [Google Scholar] [CrossRef]
- Liu, J.; Khan, U.; Coleman, J.; Fernandez, B.; Rodriguez, P.; Naher, S.; Brabazon, D. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Mater. Des. 2016, 94, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Xiong, B. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites. J. Alloys Compd. 2017, 697, 31–36. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Tang, A.; Asif, M. Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci. Mater. Int. 2014, 24, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Gürbüz, M.; Can Şenel, M.; Koç, E. The effect of sintering time, temperature, and graphene addition on the hardness and microstructure of aluminum composites. J. Compos. Mater. 2017, 52, 553–563. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 2012, 66, 594–597. [Google Scholar] [CrossRef] [Green Version]
- Dasari, B.L.; Morshed, M.; Nouri, J.M.; Brabazon, D.; Naher, S. Mechanical properties of graphene oxide reinforced aluminium matrix composites. Compos. Part B Eng. 2018, 145, 136–144. [Google Scholar] [CrossRef]
- Andreea, M.; Ţă, M.I.; Iovu, H. Molecular modeling of mechanical properties of the chitosan based graphene composites. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2014, 76, 3–8. [Google Scholar]
- Montazeri, a.; Rafii-Tabar, H. Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites. Phys. Lett. A 2011, 375, 4034–4040. [Google Scholar] [CrossRef]
- Chandra, Y.; Scarpa, F.; Chowdhury, R.; Adhikari, S.; Sienz, J. Multiscale hybrid atomistic-FE approach for the nonlinear tensile behaviour of graphene nanocomposites. Compos. Part A Appl. Sci. Manuf. 2013, 46, 147–153. [Google Scholar] [CrossRef]
- Spanos, K.N.; Georgantzinos, S.K.; Anifantis, N.K. Mechanical properties of graphene nanocomposites: A multiscale finite element prediction. Compos. Struct. 2015, 132, 536–544. [Google Scholar] [CrossRef]
- Papadopoulos, V.; Seventekidis, P.; Sotiropoulos, G. Stochastic multiscale modeling of graphene reinforced composites. Eng. Struct. 2017, 145, 176–189. [Google Scholar] [CrossRef]
- Giannopoulos, G.I. Elastic buckling and flexural rigidity of graphene nanoribbons by using a unique translational spring element per interatomic interaction. Comput. Mater. Sci. 2012, 53, 388–395. [Google Scholar] [CrossRef]
- Arroyo, M.; Belytschko, T. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 2004, 69, 1–11. [Google Scholar] [CrossRef]
- Li, C.; Chou, T. A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 2003, 40, 2487–2499. [Google Scholar] [CrossRef]
- Cao, G. Atomistic Studies of Mechanical Properties of Graphene. Polymers (Basel) 2014, 6, 2404–2432. [Google Scholar] [CrossRef]
- Goyenola, C.; Denis, P.A.; Mombrú, Á.W. Mechanical and Electronic Properties of Graphene Nanostructures. Phys. Appl. Graphene Theory 2011, 349–366. [Google Scholar]
- Baykasoglu, C.; Mugan, A. Dynamic analysis of single-layer graphene sheets. Comput. Mater. Sci. 2012, 55, 228–236. [Google Scholar] [CrossRef]
- Kim, H.S.; Hong, S.I.; Kim, S.J. On the rule of mixtures for predicting the mechanical properties of composites with homogeneously distributed soft and hard particles. J. Mater. Process. Technol. 2001, 112, 109–113. [Google Scholar] [CrossRef]
- Shin, S.E.; Choi, H.J.; Shin, J.H.; Bae, D.H. Strengthening behavior of few-layered graphene/aluminum composites. Carbon N. Y. 2015, 82, 143–151. [Google Scholar] [CrossRef]
- Dunand, D.C.; Mortensen, A. Reinforced silver chloride as a model material for the study of dislocations in metal matrix composites. Mater. Sci. Eng. A 1991, 144, 179–188. [Google Scholar] [CrossRef]
- Chawla, N.; Chawla, K.K. Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites. J. Mater. Sci. 2006, 41, 913–925. [Google Scholar] [CrossRef]
- Li, Z.; Fan, G.; Tan, Z.; Guo, Q.; Xiong, D.; Su, Y.; Li, Z.; Zhang, D. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology 2014, 25, 325601. [Google Scholar] [CrossRef]
- Bartolucci, S.F.; Paras, J.; Rafiee, M.A.; Rafiee, J.; Lee, S.; Kapoor, D.; Koratkar, N. Graphene-aluminum nanocomposites. Mater. Sci. Eng. A 2011, 528, 7933–7937. [Google Scholar] [CrossRef]
- Tabandeh-Khorshid, M.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Eng. Sci. Technol. an Int. J. 2016, 19, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, X.; Geng, L. Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing. Mater. Des. 2018, 144, 159–168. [Google Scholar] [CrossRef]
- Cho, J.; Luo, J.J.; Daniel, I.M. Mechanical characterization of graphite / epoxy nanocomposites by multi-scale analysis. Science 2007, 67, 2399–2407. [Google Scholar] [CrossRef]
- Giannopoulos, G.I.; Kallivokas, I.G. Mechanical properties of graphene based nanocomposites incorporating a hybrid interphase. Finite Elem. Anal. Des. 2014, 90, 31–40. [Google Scholar] [CrossRef]
- Li, Z.; Young, R.J.; Wilson, N.R.; Kinloch, I.A.; Vallés, C.; Li, Z. Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites. Compos. Sci. Technol. 2016, 123, 125–133. [Google Scholar] [CrossRef]
- Liang, Q.; Yao, X.; Wang, W.; Liu, Y.; Wong, C.P. A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture-An Approach for Graphene-based Thermal Interfacial Materials. ACS Nano 2011, 5, 2392–2401. [Google Scholar] [CrossRef]
Material | Young’s Modulus (MPa) | Poisson’s Ratio | Volume Fraction |
---|---|---|---|
Al | 7 × 104 | 0.34 | 0.95, 0.9, 0.8, 0.50 |
GO | 33 × 104 | 0.14 | 0.05, 0.15, 0.2, 0.50 |
Material | Experimental | Strengthening | FE Model | ||
---|---|---|---|---|---|
0.2%YS (MPa) | Load Bearing (MPa) | Taylor (MPa) | Summation (MPa) | YS (MPa) | |
Pure Al | 60.2 ± 3 | - | - | - | 200.3 |
0.05 GO/Al | 56.3 ± 4.3 | 62.8 | 80.1 | 203.1 | 269.7 |
0.1 GO/Al | 53.8 ± 3.9 | 67.4 | 87.8 | 215.4 | 320.9 |
0.2 GO/Al | 48.1 ± 5.7 | 70.3 | 96.9 | 227.4 | 394.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dasari, B.L.; Brabazon, D.; Naher, S. Prediction of Mechanical Properties of Graphene Oxide Reinforced Aluminum Composites. Metals 2019, 9, 1077. https://doi.org/10.3390/met9101077
Dasari BL, Brabazon D, Naher S. Prediction of Mechanical Properties of Graphene Oxide Reinforced Aluminum Composites. Metals. 2019; 9(10):1077. https://doi.org/10.3390/met9101077
Chicago/Turabian StyleDasari, Bhagya Lakshmi, Dermot Brabazon, and Sumsun Naher. 2019. "Prediction of Mechanical Properties of Graphene Oxide Reinforced Aluminum Composites" Metals 9, no. 10: 1077. https://doi.org/10.3390/met9101077
APA StyleDasari, B. L., Brabazon, D., & Naher, S. (2019). Prediction of Mechanical Properties of Graphene Oxide Reinforced Aluminum Composites. Metals, 9(10), 1077. https://doi.org/10.3390/met9101077