Oxygen Reduction Behavior of HDH TiH2 Powder during Dehydrogenation Reaction
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peters, M.; Kumpfert, J.; Ward, C.H.; Leyens, C. Titanium Alloys for Aerospace Applications. Adv. Eng. Mater. 2017, 5, 419–427. [Google Scholar] [CrossRef]
- Boyer, R.R.; Briggs, R.D. The use of β titanium alloys in the aerospace industry. J. Mater. Eng. Perform. 2005, 14, 681–685. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New Developments of Ti-Based Alloys for Biomedical Applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, N.T.C.; Guastaldi, A.C. Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater. 2009, 5, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Park, H.K.; Na, T.W.; Park, J.M.; Kim, Y.H.; Kim, G.H.; Lee, B.S.; Kim, H.G. Effect of cyclic heat treatment on commercially pure titanium part fabricated by electron beam additive manufacturing. J. Alloys Compd. 2019, 796, 300–306. [Google Scholar] [CrossRef]
- Hascalik, A.; Çaydaş, U.; Gürün, H. Effect of traverse speed on abrasive waterjet machining of Ti–6Al–4V alloy. Mater. Des. 2007, 28, 1953–1957. [Google Scholar] [CrossRef]
- Froes, F.H.; Mashl, S.J.; Hebeisen, J.C.; Moxson, V.S.; Duz, V.A. The Technologies of Titanium Powder Metallurgy. JOM 2004, 56, 46–48. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.F.; Tang, H.P.; Liu, C.T.; Liu, B.; Huang, B.Y. Design of powder metallurgy titanium alloys and composites. Mater. Sci. Eng. A 2006, 418, 25–35. [Google Scholar] [CrossRef]
- Fang, Z.Z.; Paramore, J.D.; Sun, P.; Chandran, K.S.R.; Zhang, Y.; Xia, Y.; Cao, F.; Koopman, M.; Free, M. Powder metallurgy of titanium – past, present, and future. Inter. Mater. Rev. 2018, 63, 407–459. [Google Scholar] [CrossRef]
- Azevedo, C.R.F.; Rodrigues, D.; Neto, F.B. Ti–Al–V powder metallurgy (PM) via the hydrogenation–dehydrogenation (HDH) process. JALCOM 2003, 353, 217–227. [Google Scholar] [CrossRef]
- Baril, E.; Lefebvre, L.P.; Thomas, Y. Interstitial elements in titanium powder metallurgy: Sources and control. Powder Metall. 2011, 54, 183–186. [Google Scholar] [CrossRef]
- Sun, P.; Fang, Z.Z.; Xia, Y.; Zhang, Y.; Zhou, C. A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing. Powder Technol. 2016, 301, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, S.; Wunderer, M.; Huissel, A.; Zaeh, M.F. A New Approach for a Flexible Powder Production for Additive Manufacturing. Procedia Manuf. 2016, 6, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Sungail, C.; Abid, A. Spherical tantalum feed powder for metal additive manufacturing. Metal Powder Rep. 2018, 73, 316–318. [Google Scholar] [CrossRef]
- Moxson, V.S.; Qazi, J.I.; Patankar, S.N.; Senkov, O.N.; Froes, F.H. Low Cost CP-Titanium and Ti-6Al-4V Alloys. Key Eng. Mater. 2002, 230-232, 339–343. [Google Scholar] [CrossRef]
- Na, T.W.; Kim, W.R.; Yang, S.M.; Kwon, O.H.; Park, J.M.; Kim, G.H.; Jung, K.H.; Lee, C.W.; Park, H.K. Effect of laser power on oxygen and nitrogen concentration of commercially pure titanium manufactured by selective laser melting. Mater. Charact. 2018, 143, 110–117. [Google Scholar] [CrossRef]
- McCracken, C.G.; Barbis, D.P.; Deeter, R.C. Key characteristics of hydride–dehydride titanium powder. Powder Metall. 2011, 54, 180–183. [Google Scholar] [CrossRef]
- Bolzoni, L.; Ruiz-Navas, E.M.; Gordo, E. Powder metallurgy CP-Ti performances: Hydride–dehydride vs. sponge. Mater. Des. 2014, 60, 226–232. [Google Scholar] [CrossRef]
- Bhosle, V.; Baburaj, E.G.; Miranova, M.; Salama, K. Dehydrogenation of TiH2. Mater. Sci. Eng. A 2003, 356, 190–199. [Google Scholar] [CrossRef]
- Park, H.K.; Na, T.W.; Yang, S.M.; Kim, G.H.; Lee, B.S.; Kim, H.G. Thermodynamic analysis of oxygen refining during electron-beam additive manufacturing of pure titanium products. Mater. Lett. 2019, 236, 106–108. [Google Scholar] [CrossRef]
- Wang, C.; Pan, L.; Zhang, Y.; Xiao, S.; Chen, Y. Deoxidization mechanism of hydrogen in TiH2 dehydrogenation process. Int. J. Hydrog. Energy 2016, 41, 14836–14841. [Google Scholar] [CrossRef]
- Das, S.; Dutta, D.; Araujo, R.B.; Chakraborty, S.; Ahujac, R.; Bhattacharyya, A.J. Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery. Phys. Chem. Chem. Phys. 2016, 18, 22323–22330. [Google Scholar] [CrossRef] [PubMed]
- Gabe, D.R. The role of hydrogen in metal electrodeposition processes. J. Appl. Electrochem. 1997, 27, 908–915. [Google Scholar] [CrossRef]
Sample | Oxygen Concentration |
---|---|
TiH2 (before milling) | 0.133 |
TiH2 (after milling) | 0.282 |
Dehydrogenated Ti | 0.216 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.B.; Choi, J.; Na, T.-W.; Kang, J.-W.; Park, K.; Park, H.-K. Oxygen Reduction Behavior of HDH TiH2 Powder during Dehydrogenation Reaction. Metals 2019, 9, 1154. https://doi.org/10.3390/met9111154
Park KB, Choi J, Na T-W, Kang J-W, Park K, Park H-K. Oxygen Reduction Behavior of HDH TiH2 Powder during Dehydrogenation Reaction. Metals. 2019; 9(11):1154. https://doi.org/10.3390/met9111154
Chicago/Turabian StylePark, Ki Beom, Jaeho Choi, Tae-Wook Na, Jang-Won Kang, Kwangsuk Park, and Hyung-Ki Park. 2019. "Oxygen Reduction Behavior of HDH TiH2 Powder during Dehydrogenation Reaction" Metals 9, no. 11: 1154. https://doi.org/10.3390/met9111154
APA StylePark, K. B., Choi, J., Na, T.-W., Kang, J.-W., Park, K., & Park, H.-K. (2019). Oxygen Reduction Behavior of HDH TiH2 Powder during Dehydrogenation Reaction. Metals, 9(11), 1154. https://doi.org/10.3390/met9111154