Mechanical Properties and Microstructure Characterization of AISI “D2” and “O1” Cold Work Tool Steels
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. Experiments
3. Results and Discussion
3.1. Tensile and Compression Tests
3.2. Fracture of Specimens
3.3. Microstructure
4. Conclusions
- The tensile yield strength of “O1” tool steel was higher than “D2” tool steel.
- The specimens of “O1” tool steel showed vivid necking prior to fracture with 19.7% area reduction, whereas the specimens of “D2” tool steel demonstrated no necking throughout the loading process (1.3% area reduction).
- The compression yield strength was higher for “O1” than for “D2” tool steel.
- The surface fracture for “O1” was cup–cone, whereas it was flat for “D2” tool steel.
- DIC was used to measure surface strains and predict cracks initiation location. The high localized strains identified in the DIC images pointed out where the cracks initiated. The crack initiation prediction was in good agreement with the results of the experiments for both tool steel types.
- The parabolic dimple-like structures in the SEM images revealed that both tool steels had a ductile fracture mode.
- The SEM images showed deeper microvoids on “O1” and sharper ones on “D2”. The fracture surfaces of “O1” had smaller dimples with less cleavage planes compared to “D2”.
Funding
Conflicts of Interest
References
- Toboła, D.; Brostow, W.; Czechowski, K.; Rusek, P. Improvement of wear resistance of some cold working tool steels. Wear 2017, 382, 29–39. [Google Scholar] [CrossRef]
- Budinski, K.G.; Budinski, M.K. Engineering Materials: Properties and Selection; Prentice Hall: Upper Saddle River, NJ, USA, 2010; p. 756. [Google Scholar]
- Bourithis, L.; Papadimitriou, G.D.; Sideris, J. Comparison of wear properties of tool steels AISI D2 and O1 with the same hardness. Tribol. Inter. 2006, 39, 479–489. [Google Scholar] [CrossRef]
- Glaeser, W.A. Characterization of Tribological Materials; Momentum Press: New York, NY, USA, 2012. [Google Scholar]
- Kheirandish, S.; Saghafian, H.; Hedjazi, J.; Momeni, M. Effect of heat treatment on microstructure of modified cast AISI D3 cold work tool steel. J. Iron. Steel Res. Int. 2010, 17, 40–45. [Google Scholar] [CrossRef]
- Hutchings, I.; Shipway, P. Tribology: Friction and Wear of Engineering Materials; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Straffelini, G. Materials for Tribology. In Friction and Wear; Springer: Berlin, Germany, 2015; pp. 159–199. [Google Scholar]
- Lansdown, A.R.; Price, A.L. Materials to Resist Wear; Pergamon Press: Elmsford, NY, USA, 1986. [Google Scholar]
- Roberts, G.A.; Kennedy, R.; Krauss, G. Tool Steels; ASM international: Cleveland, OH, USA, 1998. [Google Scholar]
- Kataria, R.; Kumar, J. A comparison of the different multiple response optimization techniques for turning operation of AISI O1 tool steel. J. Eng. Res. 2014, 2, 1–24. [Google Scholar] [CrossRef]
- Camacho, L.D.A.; Miranda, S.G.; Moreno, K.J. Tribological performance of uncoated and TiCN-coated D2, M2 and M4 steels under lubricated condition. J. Iron. Steel Res. Int. 2017, 24, 823–829. [Google Scholar] [CrossRef]
- Wei, M.-x.; Wang, S.-q.; Lan, W.; Cui, X.-h.; Chen, K.-m. Selection of heat treatment process and wear mechanism of high wear resistant cast hot-forging die steel. J. Iron. Steel Res. Int. 2012, 19, 50–57. [Google Scholar] [CrossRef]
- Koshy, P.; Dewes, R.C.; Aspinwall, D.K. High speed end milling of hardened AISI D2 tool steel (~58 HRC). J. Mater. Process. Technol. 2002, 127, 266–273. [Google Scholar] [CrossRef]
- Lima, J.G.; Avila, R.F.; Abrao, A.M.; Faustino, M.; Davim, J.P. Hard turning: AISI 4340 high strength low alloy steel and AISI D2 cold work tool steel. J. Mater. Process. Technol. 2005, 169, 388–395. [Google Scholar] [CrossRef]
- Ma, X.; Liu, R.; Li, D.Y. Abrasive wear behavior of D2 tool steel with respect to load and sliding speed under dry sand/rubber wheel abrasion condition. Wear 2000, 241, 79–85. [Google Scholar] [CrossRef]
- Mohammed, M.N.; Omar, M.Z.; Al-Zubaidi, S.; Alhawari, K.S.; Abdelgnei, M.A. Microstructure and mechanical properties of thixowelded AISI D2 tool steel. Metals 2018, 8, 316. [Google Scholar] [CrossRef]
- Sola, R.; Giovanardi, R.; Parigi, G.; Veronesi, P. A novel method for fracture toughness evaluation of tool steels with post-tempering cryogenic treatment. Metals 2017, 7, 75. [Google Scholar] [CrossRef]
- He, W.; Hayatdavoudi, A. A comprehensive analysis of fracture initiation and propagation in sandstones based on micro-level observation and digital imaging correlation. J. Pet. Sci. Eng. 2018, 164, 75–86. [Google Scholar] [CrossRef]
- Caminero, M.A.; Lopez-Pedrosa, M.; Pinna, C.; Soutis, C. Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation. Composites Part B 2013, 53, 76–91. [Google Scholar] [CrossRef]
- Caminero, M.A.; Pavlopoulou, S.; Lopez-Pedrosa, M.; Nicolaisson, B.G.; Pinna, C.; Soutis, C. Analysis of adhesively bonded repairs in composites: Damage detection and prognosis. Compos. Struct. 2013, 95, 500–517. [Google Scholar] [CrossRef]
- Caminero, M.A.; Lopez-Pedrosa, M.; Pinna, C.; Soutis, C. Damage assessment of composite structures using digital image correlation. Appl. Compos. Mater. 2014, 21, 91–106. [Google Scholar] [CrossRef]
- Romanowicz, P.J. Experimental and numerical estimation of the damage level in multilayered composite plates. Materialwiss. Werkstofftech. 2018, 49, 591–605. [Google Scholar] [CrossRef]
- Algarni, M.; Bai, Y.; Choi, Y. A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture. Eng. Fract. Mech. 2015, 147, 140–157. [Google Scholar] [CrossRef]
- Tvergaard, V.; Needleman, A. Analysis of the cup–cone fracture in a round tensile bar. Acta Metall. 1984, 32, 157–169. [Google Scholar] [CrossRef]
- Lee, W.-S.; Lin, C.-F.; Liu, T.-J. Strain rate dependence of impact properties of sintered 316L stainless steel. J. Nucl. Mater. 2006, 359, 247–257. [Google Scholar] [CrossRef]
- Landron, C. Ductile Damage Characterization in Dual-Phase steels Using X-Ray Tomography. PhD Thesis, The National Institute of Applied Sciences of Lyon, Lyon, France, 21 December 2011. [Google Scholar]
- Weck, A.; Wilkinson, D.S.; Maire, E.; Toda, H. Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials. Acta Mater. 2008, 56, 2919–2928. [Google Scholar] [CrossRef]
- Toda, H.; Maire, E.; Yamauchi, S.; Tsuruta, H.; Hiramatsu, T.; Kobayashi, M. In situ observation of ductile fracture using X-ray tomography technique. Acta Mater. 2011, 59, 1995–2008. [Google Scholar] [CrossRef]
Metal Type | C | Mn | Si | Cr | Mo | W | V | Fe |
---|---|---|---|---|---|---|---|---|
“D2” | 1.52 | 0.34 | 0.31 | 12.05 | 0.76 | - | 0.92 | Balance. |
“O1” | 0.94 | 1.2 | 0.32 | 0.52 | - | 0.53 | 0.19 | Balance. |
Metal Type | Ac1 | Ac3 | Ar1 | Ar3 | Austenization Temperature |
---|---|---|---|---|---|
“D2” | 788 °C | 845 °C | 769 °C | 744 °C | 1010–1024 °C |
“O1” | 732 °C | 760 °C | 703 °C | 671 °C | 802–816 °C |
Specimen | Modulus of Elasticity | 0.2% Offset Yield Strength | Yield Strength | UTS |
---|---|---|---|---|
AISI “D2” | 203 GPa | 411 MPa | 350 MPa | 758 MPa |
AISI “O1” | 211 GPa | 829 MPa | 758 MPa | 846 MPa |
Specimen | Modulus of Toughness | Fracture Strength | Displacement at Fracture | Gauge Length | Fracture Strain | Area Reduction |
---|---|---|---|---|---|---|
AISI “D2” | 81 MPa | 723 MPa | 0.61 mm | 30 mm | 1.97% | 1.3% |
AISI “O1” | 68 MPa | 703 MPa | 0.35 mm | 30 mm | 1.09% | 19.7% |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algarni, M. Mechanical Properties and Microstructure Characterization of AISI “D2” and “O1” Cold Work Tool Steels. Metals 2019, 9, 1169. https://doi.org/10.3390/met9111169
Algarni M. Mechanical Properties and Microstructure Characterization of AISI “D2” and “O1” Cold Work Tool Steels. Metals. 2019; 9(11):1169. https://doi.org/10.3390/met9111169
Chicago/Turabian StyleAlgarni, Mohammed. 2019. "Mechanical Properties and Microstructure Characterization of AISI “D2” and “O1” Cold Work Tool Steels" Metals 9, no. 11: 1169. https://doi.org/10.3390/met9111169
APA StyleAlgarni, M. (2019). Mechanical Properties and Microstructure Characterization of AISI “D2” and “O1” Cold Work Tool Steels. Metals, 9(11), 1169. https://doi.org/10.3390/met9111169