Aluminum Foam-Filled Steel Tube Fabricated from Aluminum Burrs of Die-Castings by Friction Stir Back Extrusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Al Foam-Filled Steel Tube
2.2. Evaluation of Pore Structures
2.3. Compression Tests
3. Results and Discussion
3.1. Time–Temperature Relationship during FSBE
3.2. Obtained Al Foam-Filled Steel Tube
3.3. Compression Properties
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 2001, 46, 559–632. [Google Scholar] [CrossRef]
- García-Moreno, F. Commercial applications of metal foams: Their properties and production. Materials 2016, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Kanahashi, H.; Kanetake, N. Axial crushing performance of porous aluminum filled members. J. Jpn. Inst. Met. Mater. 2009, 73, 453–461. [Google Scholar] [CrossRef]
- Duarte, I.; Vesenjak, M.; Krstulović-Opara, L. Dynamic and quasi-static bending behaviour of thin-walled aluminium tubes filled with aluminium foam. Compos. Struct. 2014, 109, 48–56. [Google Scholar] [CrossRef]
- Toksoy, A.K.; Tanoglu, M.; Guden, M.; Hall, I.W. Effect of adhesive on the strengthening of aluminum foam-filled circular tubes. J. Mater. Sci. 2004, 39, 1503–1506. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorsi, L.; Proverbio, E.; Raffaele, N. Effect of the interface bonding on the mechanical response of aluminium foam reinforced steel tubes. J. Mater. Sci. 2010, 45, 1514–1522. [Google Scholar] [CrossRef]
- Baumgartner, F.; Duarte, I.; Banhart, J. Industrialization of powder compact foaming process. Adv. Eng. Mater. 2000, 2, 168–174. [Google Scholar] [CrossRef]
- Hangai, Y.; Utsunomiya, T.; Hasegawa, M. Effect of tool rotating rate on foaming properties of porous aluminum fabricated by using friction stir processing. J. Mater. Process. Technol. 2010, 210, 288–292. [Google Scholar] [CrossRef]
- Duarte, I.; Vesenjak, M.; Krstulovic-Opara, L.; Ren, Z.R. Static and dynamic axial crush performance of in-situ foam-filled tubes. Compos. Struct. 2015, 124, 128–139. [Google Scholar] [CrossRef]
- Shinoda, T. Applications of friction technology on cast materials. J. JFS 2011, 83, 695–701. [Google Scholar]
- Abu-Farha, F. A preliminary study on the feasibility of friction stir back extrusion. Scr. Mater. 2012, 66, 615–618. [Google Scholar] [CrossRef]
- Dinaharan, I.; Sathiskumar, R.; Vijay, S.J.; Murugan, N. Microstructural Characterization of pure copper tubes produced by a novel method friction stir back extrusion. Procedia Mater. Sci. 2014, 5, 1502–1508. [Google Scholar] [CrossRef]
- Hangai, Y.; Saito, M.; Utsunomiya, T.; Kitahara, S.; Kuwazuru, O.; Yoshikawa, N. Fabrication of aluminum foam-filled thin-wall steel tube by friction welding and its compression properties. Materials 2014, 7, 6796–6810. [Google Scholar] [CrossRef]
- Hangai, Y.; Nakano, Y.; Utsunomiya, T.; Kuwazuru, O.; Yoshikawa, N. Drop weight impact behavior of Al-Si-Cu alloy foam-filled thin-walled steel pipe fabricated by friction stir back extrusion. J. Mater. Eng. Perform. 2017, 26, 894–900. [Google Scholar] [CrossRef]
- Hangai, Y.; Nakano, Y.; Koyama, S.; Kuwazuru, O.; Kitahara, S.; Yoshikawa, N. Fabrication of aluminum tubes filled with aluminum alloy foam by friction welding. Materials 2015, 8, 7180–7190. [Google Scholar] [CrossRef] [PubMed]
- Hangai, Y.; Otazawa, S.; Utsunomiya, T. Aluminum alloy foam-filled aluminum tube fabricated by friction stir back extrusion and its compression properties. Compos. Struct. 2018, 183, 416–422. [Google Scholar] [CrossRef]
- Hangai, Y.; Otazawa, S.; Utsunomiya, T.; Suzuki, R.; Koyama, S.; Matsubara, M.; Yoshikawa, N. Fabrication of bilayer tube consisting of outer aluminum foam tube and inner dense aluminum tube by friction stir back extrusion. Mater. Today Commun. 2018, 15, 36–42. [Google Scholar] [CrossRef]
- Gronostajski, J.Z.; Kaczmar, J.W.; Marciniak, H.; Matuszak, A. Direct recycling of aluminium chips into extruded products. J. Mater. Process. Technol. 1997, 64, 149–156. [Google Scholar] [CrossRef]
- Tekkaya, A.E.; Schikorra, M.; Becker, D.; Biermann, D.; Hammer, N.; Pantke, K. Hot profile extrusion of AA-6060 aluminum chips. J. Mater. Process. Technol. 2009, 209, 3343–3350. [Google Scholar] [CrossRef]
- Kanetake, N.; Kobashi, M.; Tsuda, S. Foaming behavior of aluminum precursor produced from machined chip waste. Adv. Eng. Mater. 2008, 10, 840–844. [Google Scholar] [CrossRef]
- Takahashi, T.; Kume, Y.; Kobashi, M.; Kanetake, N. Solid state recycling of aluminum machined chip wastes by compressive torsion processing. J. Japan Inst. Light Met. 2009, 59, 354–358. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Reynolds, A.P. Production of wire via friction extrusion of aluminum alloy machining chips. J. Mater. Process. Technol. 2010, 210, 2231–2237. [Google Scholar] [CrossRef]
- Tang, W.; Reynolds, A.P. Friction Consolidation of Aluminum Chips; John Wiley & Sons: Chichester, UK, 2011; pp. 289–298. [Google Scholar]
- Hagihara, M.; Katoh, K.; Maeda, M.; Nomoto, M. Effect of chip shape on frictional consolidated 2017 aluminum alloy chips. In Proceedings of the 129th Conference of Japan Institute of Light Metals, Tsudanuma, Japan, 21 November 2015; pp. 215–216. [Google Scholar]
- Li, X.; Baffari, D.; Reynolds, A.P. Friction stir consolidation of aluminum machining chips. Int. J. Adv. Manuf. Technol. 2018, 94, 2031–2042. [Google Scholar] [CrossRef]
- Wideroe, F.; Welo, T. Using contrast material techniques to determine metal flow in screw extrusion of aluminium. J. Mater. Process. Technol. 2013, 213, 1007–1018. [Google Scholar] [CrossRef]
- Hangai, Y.; Kobayashi, R.; Suzuki, R.; Matsubara, M.; Yoshikawa, N. Fabrication of aluminum pipe from aluminum chips by friction stir back extrusion. J. Jpn. Inst. Met. Mater. 2018, 82, 33–38. [Google Scholar] [CrossRef]
- Hangai, Y.; Ozeki, Y.; Utsunomiya, T. Foaming conditions of porous aluminum in fabrication of ADC12 aluminum alloy die castings by friction stir processing. Mater. Trans. 2009, 50, 2154–2159. [Google Scholar] [CrossRef]
- Hangai, Y.; Takada, K.; Endo, R.; Fujii, H.; Aoki, Y.; Utsunomiya, T. Foaming of aluminum foam precursor during friction stir welding. J. Mater. Process. Technol. 2018, 259, 109–115. [Google Scholar] [CrossRef]
- Hangai, Y.; Takahashi, K.; Yamaguchi, R.; Utsunomiya, T.; Kitahara, S.; Kuwazuru, O.; Yoshikawa, N. Nondestructive observation of pore structure deformation behavior of functionally graded aluminum foam by X-ray computed tomography. Mater. Sci. Eng. A 2012, 556, 678–684. [Google Scholar] [CrossRef]
- The-Japan-Institute-of-Light-Metals. Structures and Properties of Aluminum; The Japan Institute of Light Metals: Tokyo, Japan, 1991.
- JIS-H-7902. Method for Compressive Test of Porous Metals; Japanese Standards Association: Tokyo, Japan, 2016. [Google Scholar]
- Hangai, Y.; Amagai, K.; Tsurumi, N.; Omachi, K.; Shimizu, K.; Akimoto, K.; Utsunomiya, T.; Yoshikawa, N. Forming of aluminum foam using light-transmitting material as die during foaming by optical heating. Mater. Trans. 2018, 59, 1854–1859. [Google Scholar] [CrossRef]
- Hangai, Y.; Amagai, K.; Omachi, K.; Tsurumi, N.; Utsunomiya, T.; Yoshikawa, N. Forming of aluminum foam using steel mesh as die during foaming of precursor by optical heating. Opt. Laser Technol. 2018, 108, 496–501. [Google Scholar] [CrossRef]
- Matijasevic-Lux, B.; Banhart, J.; Fiechter, S.; Görke, O.; Wanderka, N. Modification of titanium hydride for improved aluminium foam manufacture. Acta Mater. 2006, 54, 1887–1900. [Google Scholar] [CrossRef] [Green Version]
- Illeková, E.; Harnúšková, J.; Florek, R.; Simančík, F.; Maťko, I.; Švec, P. Peculiarities of TiH2 decomposition. J. Therm. Anal. Calorim. 2011, 105, 583–590. [Google Scholar] [CrossRef]
- Peng, Q.; Yang, B.; Friedrich, B. Porous Titanium Parts Fabricated by Sintering of TiH2 and Ti Powder Mixtures. J. Mater. Eng. Perform. 2018, 27, 228–242. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hangai, Y.; Kobayashi, R.; Suzuki, R.; Matsubara, M.; Yoshikawa, N. Aluminum Foam-Filled Steel Tube Fabricated from Aluminum Burrs of Die-Castings by Friction Stir Back Extrusion. Metals 2019, 9, 124. https://doi.org/10.3390/met9020124
Hangai Y, Kobayashi R, Suzuki R, Matsubara M, Yoshikawa N. Aluminum Foam-Filled Steel Tube Fabricated from Aluminum Burrs of Die-Castings by Friction Stir Back Extrusion. Metals. 2019; 9(2):124. https://doi.org/10.3390/met9020124
Chicago/Turabian StyleHangai, Yoshihiko, Ryusei Kobayashi, Ryosuke Suzuki, Masaaki Matsubara, and Nobuhiro Yoshikawa. 2019. "Aluminum Foam-Filled Steel Tube Fabricated from Aluminum Burrs of Die-Castings by Friction Stir Back Extrusion" Metals 9, no. 2: 124. https://doi.org/10.3390/met9020124
APA StyleHangai, Y., Kobayashi, R., Suzuki, R., Matsubara, M., & Yoshikawa, N. (2019). Aluminum Foam-Filled Steel Tube Fabricated from Aluminum Burrs of Die-Castings by Friction Stir Back Extrusion. Metals, 9(2), 124. https://doi.org/10.3390/met9020124