Occupational Exposure to Fine Particles and Ultrafine Particles in a Steelmaking Foundry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Study Design
- outside the plant, to measure general environmental background levels (BG) not influenced by the factory emissions;
- at a distance of 50 m from the electric arc furnace (EAF), 2 m from the ladle furnace (LF), 2 m from the continuous casting (CC), and within the control consoles (respectively P-EAF, P-LF and P-CC);
- in three welding stations (W1, W2, W3), respectively, with CASTOLIN 5006 electric welding on steel (55 electrodes), Nicro HLS on cast iron and electrode welding on knife (special iron) (21 electrodes);
- inside the mechanical workshop (BT), in which various activities were carried out, including the use of an oxide flame and a grinder;
- inside the rolling mill department (AG), welding station with use of angle grinder;
- inside the overhead crane cabin in the finished product department (OC1);
- in the scrap yard and in the overhead crane in the scrap yard (OC2);
- inside the quality department workshop (QDW);
- inside the company canteen during the lunch break (SC).
2.2. Sampling Equipment
2.3. Chemical Characterization
3. Results
3.1. Particle Size Distribution
3.2. Particle Number Concentration
3.3. Particle Surface Area Concentration
3.4. Particle Mass Concentration
3.5. Chemical Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Chemical Agents and Related Occupations Volume 100 F—A Review of Human Carcinogens; International Agency for Research on Cancer (IARC) Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 100F; OCCU: Lyon, France, 2012. [Google Scholar]
- Hobbesland, A.; Kjuus, H.; Thelle, D.S. Study of cancer incidence among 8530 male workers in eight Norwegian plants producing ferrosilicon and silicon metal. Occup. Environ. Med. 1999, 56, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Kjuus, H.; Andersen, A.; Langård, S.; Knudsen, K.E. Cancer incidence among workers in the Norwegian ferroalloy industry. Br. J. Ind. Med. 1986, 43, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Tossavainen, A. Estimated risk of lung cancer attributable to occupational exposures in iron and steel foundries. IARC Sci. Publ. 1990, 104, 363–367. [Google Scholar]
- Koskela, R.-S.; Mutanen, P.; Sorsa, J.-A.; Klockars, M. Respiratory disease and cardiovascular morbidity. Occup. Environ. Med. 2005, 62, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Hałatek, T.; Trzcinka-Ochocka, M.; Matczak, W.; Gruchała, J. Serum Clara cell protein as an indicator of pulmonary impairment in occupational exposure at aluminum foundry. Int. J. Occup. Med. Environ. Health 2006, 19, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lee, S.; Pisaniello, D. Measurement of fine and ultrafine dust exposure in an iron foundry in South Australia. J. Heal. 2010, 26, 5–9. [Google Scholar]
- Leonard, S.S.; Chen, B.T.; Stone, S.G.; Schwegler-Berry, D.; Kenyon, A.J.; Frazer, D.; Antonini, J.M. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species. Part. Fibre Toxicol. 2010, 7, 32. [Google Scholar] [CrossRef]
- Antonini, J.M.; Leonard, S.S.; Roberts, J.R.; Solano-Lopez, C.; Young, S.-H.; Shi, X.; Taylor, M.D. Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction. Mol. Cell. Biochem. 2005, 279, 17–23. [Google Scholar] [CrossRef]
- Vincent, J.H.; Clement, C.F. Ultrafine particles in workplace atmospheres. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2000, 358, 2673–2682. [Google Scholar] [CrossRef]
- Wake, D.; Mark, D.; Northage, C. Ultrafine Aerosols in the Workplace. Ann. Occup. Hyg. 2002, 46, 235–238. [Google Scholar] [CrossRef]
- Evans, D.E.; Heitbrink, W.A.; Slavin, T.J.; Peters, T.M. Ultrafine and Respirable Particles in an Automotive Grey Iron Foundry. Ann. Occup. Hyg. 2007, 52, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Heitbrink, W.A.; Evans, D.E.; Peters, T.M.; Slavin, T.J. Characterization and Mapping of Very Fine Particles in an Engine Machining and Assembly Facility. J. Occup. Environ. Hyg. 2007, 4, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.M.; Heitbrink, W.A.; Evans, D.E.; Slavin, T.J.; Maynard, A.D. The Mapping of Fine and Ultrafine Particle Concentrations in an Engine Machining and Assembly Facility. Ann. Occup. Hyg. 2005, 50, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Kero, I.; Naess, M.K.; Tranell, G. Particle size distributions of particulate emissions from the ferroalloy industry evaluated by electrical low pressure impactor (ELPI). J. Occup. Environ. Hyg. 2015, 12, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Kero, I.T.; Jørgensen, R.B. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry. Int. J. Environ. Res. Public Health 2016, 13, 871. [Google Scholar] [CrossRef] [PubMed]
- Debia, M.; Weichenthal, S.; Tardif, R.; Dufresne, A. Ultrafine Particle (UFP) Exposures in an Aluminium Smelter: Soderberg vs. Prebake Potrooms. Environ. Pollut. 2011, 1, 2. [Google Scholar] [CrossRef]
- Chang, M.-C.O.; Chow, J.C.; Watson, J.G.; Glowacki, C.; Sheya, S.A.; Prabhu, A. Characterization of Fine Particulate Emissions from Casting Processes. Aerosol Sci. Technol. 2005, 39, 947–959. [Google Scholar] [CrossRef]
- Oberdörster, G. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 2001, 74, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Brown, D.; Clouter, A.; Duffin, R.; MacNee, W.; Renwick, L.; Tran, L.; Stone, V. The Pulmonary Toxicology of Ultrafine Particles. J. Aerosol Med. 2002, 15, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res. Int. 2013, 2013, 942916. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.-S.; Duffin, R.; Poland, C.A.; Howie, S.E.M.; MacNee, W.; Bradley, M.; Megson, I.L.; Donaldson, K. Metal Oxide Nanoparticles Induce Unique Inflammatory Footprints in the Lung: Important Implications for Nanoparticle Testing. Environ. Health Perspect. 2010, 118, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Hennig, F.; Quass, U.; Hellack, B.; Küpper, M.; Kuhlbusch, T.A.J.; Stafoggia, M.; Hoffmann, B. Ultrafine and Fine Particle Number and Surface Area Concentrations and Daily Cause-Specific Mortality in the Ruhr Area, Germany, 2009–2014. Environ. Health Perspect. 2018, 126. [Google Scholar] [CrossRef] [PubMed]
- Lanzinger, S.; Schneider, A.; Breitner, S.; Stafoggia, M.; Erzen, I.; Dostal, M.; Pastorkova, A.; Bastian, S.; Cyrys, J.; Zscheppang, A.; et al. Associations between ultrafine and fine particles and mortality in five central European cities—Results from the UFIREG study. Environ. Int. 2016, 88, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.; Gregory, C.C.; Matthews, I.P.; Hoogendoorn, B. The biological effects upon the cardiovascular system consequent to exposure to particulates of less than 500 nm in size. Biomarkers 2016, 21, 1–47. [Google Scholar] [CrossRef] [PubMed]
- HEI Review Panel on Ultrafine Particles. Understanding the Health Effects of Ambient Ultrafine Particles; HEI Perspectives 3; Health Effects Institute: Boston, MA, USA, 2013. [Google Scholar]
- Stone, V.; Miller, M.R.; Clift, M.J.D.; Elder, A.; Mills, N.L.; Møller, P.; Schins, R.P.F.; Vogel, U.; Kreyling, W.G.; Alstrup Jensen, K.; et al. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environ. Health Perspect. 2017, 125, 106002. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, S.; Baumgartner, J.; Weichenthal, S. Impacts of exposure to black carbon, elemental carbon, and ultrafine particles from indoor and outdoor sources on blood pressure in adults: A review of epidemiological evidence. Environ. Res. 2018, 161, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Downward, G.S.; van Nunen, E.J.H.M.; Kerckhoffs, J.; Vineis, P.; Brunekreef, B.; Boer, J.M.A.; Messier, K.P.; Roy, A.; Verschuren, W.M.M.; van der Schouw, Y.T.; et al. Long-Term Exposure to Ultrafine Particles and Incidence of Cardiovascular and Cerebrovascular Disease in a Prospective Study of a Dutch Cohort. Environ. Health Perspect. 2018, 126, 127007. [Google Scholar] [CrossRef] [PubMed]
- Regional Office for Europe, World Health Organization. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project Technical Report; Regional Office for Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- Maynard, A.D.; Maynard, R.L. A derived association between ambient aerosol surface area and excess mortality using historic time series data. Atmos. Environ. 2002, 36, 5561–5567. [Google Scholar] [CrossRef]
- Buonanno, G.; Marks, G.B.; Morawska, L. Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects. Environ. Pollut. 2013, 180, 246–250. [Google Scholar] [CrossRef]
- Kim, C.S.; Jaques, P.A. Analysis of Total Respiratory Deposition of Inhaled Ultrafine Particles in Adult Subjects at Various Breathing Patterns. Aerosol Sci. Technol. 2004, 38, 525–540. [Google Scholar] [CrossRef]
- Franck, U.; Odeh, S.; Wiedensohler, A.; Wehner, B.; Herbarth, O. The effect of particle size on cardiovascular disorders—The smaller the worse. Sci. Total Environ. 2011, 409, 4217–4221. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Wichmann, H.E.; Tuch, T.; Heinrich, J.; Heyder, J. Respiratory effects are associated with the number of ultrafine particles. Am. J. Respir. Crit. Care Med. 1997, 155, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Schneider, A.; Cyrys, J.; Samoli, E.; Andersen, Z.J.; Bedada, G.B.; Bellander, T.; Cattani, G.; Eleftheriadis, K.; Faustini, A.; et al. Association Between Short-term Exposure to Ultrafine Particles and Mortality in Eight European Urban Areas. Epidemiology 2017, 28, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G.; Speizer, F.E. An Association between Air Pollution and Mortality in Six U.S. Cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Lippmann, M. Effects of Metals within Ambient Air Particulate Matter (PM) on Human Health. Inhal. Toxicol. 2009, 21, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Gray, D.L.; Wallace, L.A.; Brinkman, M.C.; Buehler, S.S.; La Londe, C. Respiratory and Cardiovascular Effects of Metals in Ambient Particulate Matter: A Critical Review. Rev. Environ. Contam. Toxicol. 2015, 234, 135–203. [Google Scholar] [PubMed]
- Cakmak, S.; Dales, R.; Kauri, L.M.; Mahmud, M.; Van Ryswyk, K.; Vanos, J.; Liu, L.; Kumarathasan, P.; Thomson, E.; Vincent, R.; et al. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environ. Pollut. 2014, 189, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Cassee, F.R.; Héroux, M.E.; Gerlofs-Nijland, M.E.; Kelly, F.J. Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal. Toxicol. 2013, 25, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.W.; Mills, I.C.; Walton, H.A.; Anderson, H.R. Fine particle components and health—A systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Wyzga, R.E.; Rohr, A.C. Long-term particulate matter exposure: Attributing health effects to individual PM components. J. Air Waste Manag. Assoc. 2015, 65, 523–543. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R.M.; Norford, L.; Britter, R. Ultrafine particles in cities. Environ. Int. 2014, 66, 1–10. [Google Scholar] [CrossRef]
- Viitanen, A.-K.; Uuksulainen, S.; Koivisto, A.J.; Hämeri, K.; Kauppinen, T. Workplace Measurements of Ultrafine Particles—A Literature Review. Ann. Work Expo. Heal. 2017, 61, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Marcias, G.; Fostinelli, J.; Catalani, S.; Uras, M.; Sanna, A.; Avataneo, G.; De Palma, G.; Fabbri, D.; Paganelli, M.; Lecca, L.; et al. Composition of Metallic Elements and Size Distribution of Fine and Ultrafine Particles in a Steelmaking Factory. Int. J. Environ. Res. Public Health 2018, 15, 1192. [Google Scholar] [CrossRef] [PubMed]
- Dekati Ltd. ELPI VI Software Manual, version 4.1 0; Dekati Ltd.: Kangasala, Finland, 2008. [Google Scholar]
- Cernuschi, S.; Giugliano, M.; Ozgen, S.; Consonni, S. Number concentration and chemical composition of ultrafine and nanoparticles from WTE (waste to energy) plants. Sci. Total Environ. 2012, 420, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Marra, J.; Voetz, M.; Kiesling, H.-J. Monitor for detecting and assessing exposure to airborne nanoparticles. J. Nanopart. Res. 2010, 12, 21–37. [Google Scholar] [CrossRef]
- ICRP. Human Respiratory Tract Model for Radiological Protection; ICRP Publication 66. Ann; ICRP: Ottawa, ON, Canada, 1994; Volume 24. [Google Scholar]
- UNI EN 481:1994—Atmosfera Nell’ambiente di Lavoro. Definizione Delle Frazioni Granulometriche per la Misurazione Delle Particelle Aerodisperse. Available online: http://store.uni.com/catalogo/index.php/uni-en-481-1994.html (accessed on 30 December 2018).
- Ambienti di Lavoro—Determinazione Della Frazione Inalabile Delle Particelle Aerodisperse—Metodo Gravimetrico—UNICHIM—Associazione Per l’Unificazione Nel Settore Dell’industria Chimica, Federato All’uni (Ente Nazionale di Unificazione); Italy. Available online: https://www.unichim.it/metodi/ (accessed on 30 December 2018).
- Ambienti di Lavoro—Determinazione Della Frazione Respirabile Delle Particelle Aerodisperse—Metodo Gravimetrico—UNICHIM—Associazione Per l’Unificazione Nel Settore Dell’industria Chimica—Federato All’uni (Ente Nazionale di Unificazione); Italy. Available online: https://www.unichim.it/metodi/ (accessed on 30 December 2018).
- Apostoli, P.; De Palma, G.; Catalani, S.; Bortolotti, F.; Tagliaro, F. Multielemental analysis of tissues from Cangrande della Scala, Prince of Verona, in the 14th century. J. Anal. Toxicol. 2009, 33, 322–327. [Google Scholar] [CrossRef]
- D.lgs. 9 Aprile 2008, n. 81 Testo Coordinato con il D.Lgs. 3 Agosto 2009, n. 106; Italy, 2008. Available online: http://www.gazzettaufficiale.it/eli/id/2008/04/30/008G0104/sg (accessed on 30 December 2018).
- Zimmer, A.T.; Biswas, P. Characterization of the aerosols resulting from arc welding processes. J. Aerosol Sci. 2001, 32, 993–1008. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Chao, Y.-C.; Wu, C.-H.; Tsai, C.-J.; Uang, S.-N.; Shih, T.-S. Measurements of ultrafine particle concentrations and size distribution in an iron foundry. J. Hazard. Mater. 2008, 158, 124–130. [Google Scholar] [CrossRef]
- Virtanen, A.; Joutsensaari, J.; Koop, T.; Kannosto, J.; Yli-Pirilä, P.; Leskinen, J.; Mäkelä, J.M.; Holopainen, J.K.; Pöschl, U.; Kulmala, M.; et al. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 2010, 467, 824–827. [Google Scholar] [CrossRef]
- Leskinen, J.; Joutsensaari, J.; Lyyränen, J.; Koivisto, J.; Ruusunen, J.; Järvelä, M.; Tuomi, T.; Hämeri, K.; Auvinen, A.; Jokiniemi, J. Comparison of nanoparticle measurement instruments for occupational health applications. J. Nanopart. Res. 2012, 14. [Google Scholar] [CrossRef]
- Buonanno, G.; Morawska, L.; Stabile, L. Exposure to welding particles in automotive plants. J. Aerosol Sci. 2011, 42, 295–304. [Google Scholar] [CrossRef]
- Iavicoli, I.; Leso, V.; Fontana, L.; Cottica, D.; Bergamaschi, A. Characterization of inhalable, thoracic, and respirable fractions and ultrafine particle exposure during grinding, brazing, and welding activities in a mechanical engineering factory. J. Occup. Environ. Med. 2013, 55, 430–445. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S. Selected physiological effects of ultrafine particles in acute cardiovascular morbidity. Environ. Res. 2012, 115, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G.; Ferin, J.; Gelein, R.; Soderholm, S.C.; Finkelstein, J. Role of the alveolar macrophage in lung injury: Studies with ultrafine particles. Environ. Health Perspect. 1992, 97, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Li, X.; MacNee, W. Ultrafine (nanometre) particle mediated lung injury. J. Aerosol Sci. 1998, 29, 553–560. [Google Scholar] [CrossRef]
- Buonanno, G.; Marini, S.; Morawska, L.; Fuoco, F.C. Individual dose and exposure of Italian children to ultrafine particles. Sci. Total Environ. 2012, 438, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Fuoco, F.; Stabile, L.; Buonanno, G.; Scungio, M.; Manigrasso, M.; Frattolillo, A.; Fuoco, F.C.; Stabile, L.; Buonanno, G.; Scungio, M.; et al. Tracheobronchial and Alveolar Particle Surface Area Doses in Smokers. Atmosphere 2017, 8, 19. [Google Scholar] [CrossRef]
- Soleo, L.; Lovreglio, P.; Panuzzo, L.; Nicolà D’errico, M.; Basso, A.; Gilberti, M.E.; Drago, I.; Tomasi, C.; Apostoli, P. Valutazione del rischio per la salute da esposizione a elementi metallici nei lavoratori del siderurgico e nella popolazione generale di Taranto (Italia). G. Ital. Med. Lav. Erg. 2012, 34, 381–391. [Google Scholar]
- Nurul, A.H.; Shamsul, B.M.T.; Noor Hassim, I. Assessment of dust exposure in a steel plant in the eastern coast of peninsular Malaysia. Work 2016, 55, 655–662. [Google Scholar] [CrossRef]
- Chang, C.; Demokritou, P.; Shafer, M.; Christiani, D. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes. Environ. Sci. Process. Impacts 2013, 15, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, K.; Strezov, V.; Nelson, P.F.; Stelcer, E.; Evans, T. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia. Sci. Total Environ. 2014, 487, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Marris, H.; Deboudt, K.; Augustin, P.; Flament, P.; Blond, F.; Fiani, E.; Fourmentin, M.; Delbarre, H. Fast changes in chemical composition and size distribution of fine particles during the near-field transport of industrial plumes. Sci. Total Environ. 2012, 427–428, 126–138. [Google Scholar] [CrossRef] [PubMed]
Sampling Site | Equipment | Sampling Methods | Sampling Time | Sampling Site | Equipment | Sampling Methods | Sampling Time |
---|---|---|---|---|---|---|---|
BG | IF and RF | Stationary | 6 h 26 min | W2 | IF and RF | ND | ND |
ELPI+ | Stationary | 6 h 4 min | ELPI+ | Quasi-personal | 1 h 18 min | ||
NT | Stationary | 6 h 26 min | NT | Quasi-personal | 1 h 18 min | ||
P-EAF | IF and RF | Stationary | 5 h 34 min | W3 | IF and RF | Quasi-personal | 1 h 33 min |
ELPI+ | Stationary | 5 h 34 min | ELPI+ | Quasi-personal | 1 h 33 min | ||
NT | Stationary | 1 h 9 min | NT | Quasi-personal | 1 h 33 min | ||
LF | IF and RF | Stationary | 4 h 14 min | EAF | NT | Stationary | 1 h 27 min |
ELPI+ | Stationary | 4 h 14 min | P-LF | NT | Personal | 2 min | |
NT | Stationary | 4 h 57 min | P-CC | NT | Personal | 51 min | |
CC | IF and RF | Stationary | 3 h 51 min | AG | NT | Personal | 1 h 41 min |
ELPI+ | Stationary | 3 h 51 min | BT | NT | Personal | 41 min | |
NT | Stationary | 2 h 21 min | OC1 | NT | Personal | 25 min | |
W1 | IF and RF | Quasi-personal | 1 h 24 min | OC2 | NT | Personal | 35 min |
ELPI+ | Quasi-personal | 1 h 24 min | QDW | NT | Personal | 25 min | |
NT | Quasi-personal | 1 h 24 min | SC | NT | Personal | 1 h |
Sampling Site | Particle Average Size Range (nm) | Particle Surface Area Concentration (µm2/cm3) | |||
---|---|---|---|---|---|
Alveolar Tract | Tracheobronchial Tract | ||||
Mean | Median | Mean | Median | ||
BG | 41.3 | 3.93 × 101 | 3.91 × 101 | 7.95 × 100 | 7.90 × 100 |
P-EAF | 56.5 | 1.45 × 101 | 1.30 × 101 | 2.93 × 100 | 2.63 × 100 |
LF | 29.87 | 3.79 × 102 | 3.01 × 102 | 7.65 × 101 | 6.09 × 101 |
CC | 32.68 | 4.66 × 102 | 3.08 × 102 | 9.42 × 101 | 6.23 × 101 |
W1 | 52.39 | 7.16 × 102 | 4.28 × 102 | 1.45 × 102 | 8.64 × 101 |
W2 | 38.17 | 1.73 × 102 | 1.06 × 102 | 3.50 × 101 | 2.14 × 101 |
W3 | 59.19 | 1.05 × 102 | 9.10 × 101 | 2.12 × 101 | 1.84 × 101 |
EAF | 46.71 | 4.22 × 102 | 3.12 × 102 | 8.53 × 101 | 6.30 × 101 |
P-LF | 42.83 | 2.24 × 102 | 2.08 × 102 | 4.52 × 101 | 4.20 × 101 |
P-CC | 47.58 | 3.52 × 101 | 2.91 × 101 | 7.11 × 100 | 5.88 × 100 |
AG | 34.7 | 1.49 × 102 | 1.19 × 102 | 3.01× 101 | 2.41 × 101 |
BT | 61.4 | 9.69 × 102 | 4.52 × 102 | 9.33 × 101 | 9.13 × 101 |
OC1 | 33.04 | 5.20 × 101 | 4.79 × 101 | 1.05 × 101 | 9.68 × 100 |
OC2 | 43 | 2.13 × 102 | 2.01 × 102 | 4.31 × 101 | 4.07 × 101 |
QDW | 61.4 | 1.62 × 102 | 7.53 × 101 | 3.28 × 101 | 1.52 × 101 |
SC | 40.69 | 1.68 × 102 | 1.73 × 102 | 3.40 × 101 | 3.49 × 101 |
Sampling Site | BG | P-EAF | LF | CC | W1 | W3 |
---|---|---|---|---|---|---|
Inhalable Fraction | <LOD | 0.11 | 0.7 | 0.77 | 1.63 | 0.5 |
Respirable Fraction | <LOD | 0.11 | 0.46 | 0.08 | 0.92 | 0.59 |
Metallic Element | Sampling Site | |||||
---|---|---|---|---|---|---|
BG | P-EAF | LF | CC | W1 | W3 | |
Al | 0.43 | 0.46 | 3.58 | 6.4 | 2.59 | 4.82 |
As | <LOD | <LOD | 0.078 | 0.136 | 0.087 | <LOD |
Ba | 0.05 | 0.034 | 0.24 | 0.248 | 0.07 | <LOD |
Be | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Cd | 0.0006 | 0.007 | 0.001 | 0.002 | 0.001 | 0.001 |
Co | 0.001 | 0.002 | 0.042 | 0.024 | 0.031 | <LOD |
Cr | 0.07 | 0.009 | 0.21 | 0.078 | 38.2 | 3.63 |
Cu | 0.07 | 0.13 | 1.1 | 2.7 | 0.97 | 0.21 |
Fe | 0.01 | 1.16 | 15.7 | 14.11 | 129.1 | 2.64 |
Hg | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Mn | 0.18 | 0.63 | 44.64 | 16.21 | 3.94 | 8.05 |
Mo | 0.009 | 0.013 | 0.08 | 0.157 | 0.02 | <LOD |
Ni | 0.05 | 0.053 | 0.4 | 0.346 | 1.5 | 6.47 |
Pb | 0.09 | 1.82 | 0.64 | 1.83 | 0.42 | 0.07 |
Sb | 0.003 | 0.004 | 0.02 | 0.048 | 0.01 | <LOD |
Sn | 0.01 | 0.066 | 0.22 | 0.288 | 0.22 | 0.03 |
Sr | 0.01 | 0.005 | 0.08 | 0.066 | 0.07 | 0.02 |
Zn | 0.68 | 7.89 | 1.74 | 6.19 | 1.04 | 0.73 |
Sampling Site | Di nm | Metallic Elements | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | As | Ba | Cd | Co | Cr | Cu | Fe | Mn | Mo | Ni | Pb | Sb | Sn | Sr | Zn | ||
BG | 22 | <LOD | <LOD | <LOD | <LOD | 0.11 | 1.18 | 0.93 | 40.22 | 0.33 | 0.14 | 10.03 | 0.38 | 0.05 | 0.49 | <LOD | 3.71 |
P-EAF | 2.39 | <LOD | <LOD | <LOD | <LOD | <LOD | 0.42 | 3.71 | 0.24 | 0.24 | <LOD | 0.21 | <LOD | <LOD | <LOD | <LOD | |
LF | 2.09 | <LOD | <LOD | <LOD | <LOD | <LOD | 8.03 | <LOD | <LOD | 1.02 | <LOD | 3.54 | 0.16 | 2.72 | <LOD | 7.95 | |
CC | <LOD | 1.73 | 0.69 | <LOD | <LOD | <LOD | 17.1 | 26.49 | 1.13 | 2.64 | 0.3 | 10.39 | 0.3 | 0.95 | <LOD | 7.57 | |
W1 | <LOD | <LOD | <LOD | <LOD | 0.47 | 7.71 | 10.08 | 10.44 | 0.47 | <LOD | 5.34 | 0.47 | <LOD | 1.3 | <LOD | <LOD | |
W3 | <LOD | <LOD | 2.64 | <LOD | 0.82 | 31.32 | 2.14 | 36.27 | 0.49 | 1.98 | <LOD | <LOD | <LOD | 23.9 | <LOD | <LOD | |
BG | 41 | 6.59 | <LOD | 0.69 | <LOD | <LOD | <LOD | 1.37 | <LOD | 0.19 | 0.08 | 0.16 | 0.3 | 0.05 | 0.55 | <LOD | 2.61 |
P-EAF | 0.54 | <LOD | <LOD | <LOD | <LOD | <LOD | 2.63 | 21.55 | 0.75 | 0.48 | <LOD | 1.5 | 0.09 | <LOD | <LOD | 1.92 | |
LF | 5.24 | 1.69 | 1.69 | <LOD | <LOD | <LOD | 25.79 | 3.74 | 2.09 | 3.27 | <LOD | 11.97 | 0.51 | 10.47 | 0.12 | 14.33 | |
CC | 4.33 | 7.23 | 1.21 | <LOD | <LOD | 1.17 | 116.87 | 372.24 | 10.39 | 7.79 | 8.44 | 32.46 | 1.73 | 14.72 | <LOD | 39.39 | |
W1 | 4.86 | 3.56 | 1.66 | <LOD | 0.36 | 7.94 | 18.97 | 175.5 | 2.85 | 2.25 | 6.52 | 3.79 | <LOD | 2.25 | <LOD | 6.88 | |
W3 | <LOD | <LOD | 2.97 | <LOD | 1.81 | <LOD | 5.93 | 65.94 | 4.95 | 7.75 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | |
BG | 71 | <LOD | <LOD | 0.22 | <LOD | 0.08 | <LOD | 2.14 | 4.95 | 1.13 | 0.41 | 0.71 | 1.37 | 0.08 | 3.21 | 0.49 | 2.47 |
P-EAF | 20.51 | 0.51 | <LOD | <LOD | <LOD | <LOD | 12.3 | 28.74 | 6.5 | 0.57 | 1.41 | 8.38 | 0.21 | 2.72 | <LOD | 22.9 | |
LF | 4.8 | 5.98 | <LOD | <LOD | <LOD | <LOD | 72.64 | 125.39 | 1.97 | 7.76 | 8.58 | 26.18 | 1.14 | 20.67 | 0.16 | 35.83 | |
CC | 3.46 | 28.57 | 1.95 | <LOD | 1.34 | 7.36 | 716.35 | 3185.71 | 107.34 | 30.08 | 70.55 | 116.87 | 12.55 | 76.83 | 0.13 | 227.24 | |
W1 | <LOD | 9.49 | 1.66 | <LOD | 0.95 | 28.82 | 20.75 | 583.42 | 2.85 | 2.37 | 16.01 | 20.16 | 0.95 | 20.16 | <LOD | 13.04 | |
W3 | <LOD | <LOD | 3.3 | <LOD | 8.57 | 15 | 14.01 | 105.51 | 4.78 | 32.15 | 0.99 | <LOD | 0.49 | 4.45 | <LOD | <LOD | |
BG | 121 | 71.84 | <LOD | 3.43 | <LOD | <LOD | <LOD | 3.71 | 21.98 | 3.02 | 0.3 | <LOD | 3.3 | 0.16 | 1.15 | 0.05 | 10.08 |
P-EAF | 8.23 | 1.53 | 0.36 | <LOD | <LOD | 2.39 | 32.48 | 131.72 | 31.58 | 1.5 | 2.39 | 31.43 | 0.54 | 2.99 | 0.15 | 101.93 | |
LF | 5.71 | 7.09 | 0.2 | <LOD | 0.28 | <LOD | 89.96 | 376.18 | 118.9 | 8.07 | 8.66 | 37.99 | 1.73 | 27.17 | 0.24 | 55.91 | |
CC | 9.52 | 24.46 | 1.95 | <LOD | 1.56 | 17.53 | 668.74 | 4051.39 | 186.12 | 25.32 | 78.34 | 170.97 | 10.17 | 67.74 | 0.26 | 380.9 | |
W1 | 7.11 | 12.45 | <LOD | <LOD | 0.95 | 415.04 | 20.16 | 758.92 | 8.89 | 2.49 | 15.42 | 18.38 | 0.71 | 17.79 | <LOD | 10.08 | |
W3 | 4.95 | <LOD | 2.8 | <LOD | 25.72 | 46.16 | 17.31 | 329.71 | 9.89 | 52.75 | 5.44 | 2.14 | <LOD | 5.77 | 0.66 | <LOD |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcias, G.; Fostinelli, J.; Sanna, A.M.; Uras, M.; Catalani, S.; Pili, S.; Fabbri, D.; Pilia, I.; Meloni, F.; Lecca, L.I.; et al. Occupational Exposure to Fine Particles and Ultrafine Particles in a Steelmaking Foundry. Metals 2019, 9, 163. https://doi.org/10.3390/met9020163
Marcias G, Fostinelli J, Sanna AM, Uras M, Catalani S, Pili S, Fabbri D, Pilia I, Meloni F, Lecca LI, et al. Occupational Exposure to Fine Particles and Ultrafine Particles in a Steelmaking Foundry. Metals. 2019; 9(2):163. https://doi.org/10.3390/met9020163
Chicago/Turabian StyleMarcias, Gabriele, Jacopo Fostinelli, Andrea Maurizio Sanna, Michele Uras, Simona Catalani, Sergio Pili, Daniele Fabbri, Ilaria Pilia, Federico Meloni, Luigi Isaia Lecca, and et al. 2019. "Occupational Exposure to Fine Particles and Ultrafine Particles in a Steelmaking Foundry" Metals 9, no. 2: 163. https://doi.org/10.3390/met9020163
APA StyleMarcias, G., Fostinelli, J., Sanna, A. M., Uras, M., Catalani, S., Pili, S., Fabbri, D., Pilia, I., Meloni, F., Lecca, L. I., Madeo, E., Massacci, G., Stabile, L., D’Aloja, E., Buonanno, G., De Palma, G., & Campagna, M. (2019). Occupational Exposure to Fine Particles and Ultrafine Particles in a Steelmaking Foundry. Metals, 9(2), 163. https://doi.org/10.3390/met9020163