The Role of Hydrogen in Hydrogen Embrittlement of Metals: The Case of Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Formation of Short-Range Order in 316 SS Due to Hydrogen-Enhanced Ordering
4.2. Effect of Hydrogen-Enhanced Ordering
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gerberich, W.W.; Stauffer, D.D.; Sofronis, P. A coexistent view of hydrogen effects on mechanical behavior of crystals: HELP and HEDE. In Effects of Hydrogen on Materials, Proceedings of the 2008 International Hydrogen Conference, Moran, WY, USA, 7–10 September 2008; Somerday, B., Sofronis, P., Jones, R., Eds.; ASM International: Materials Park, OH, USA; pp. 38–45.
- Kim, Y.S.; Bak, S.H.; Kim, S.S. Effect of strain-induced martensite on tensile properties and hydrogen embrittlement of 304 stainless steel. Metall. Mater. Trans. A 2016, 47A, 222–230. [Google Scholar] [CrossRef]
- Kim, Y.S.; Maeng, W.Y.; Kim, S.S. Effect of short-range ordering on stress corrosion cracking susceptibility of Alloy 600 studied by electron and neutron diffraction. Acta Mater. 2015, 83, 507–515. [Google Scholar] [CrossRef]
- Flanagan, T.B.; Craft, A.P.; Kuji, T.; Baba, K.; Sakamoto, Y. Hydrogen induced disorder-order transition in Pd3Mn. Scr. Metall. 1986, 20, 1745–1750. [Google Scholar] [CrossRef]
- Yang, F.; Wang, H.; Wang, H.; Zhang, J.; Zhu, J. Effect of hydrogen annealing on L1o ordering transformation and magnetic properties of CoPt thin films on B4C underlayer. J. Phys. D Appl. Phys. 2009, 42, 115001. [Google Scholar] [CrossRef]
- Fukai, Y.; Shizuku, Y.; Kurokawa, Y. Superabundant vacancy formation in Ni-H alloys. J. Alloys Compd. 2001, 329, 195–201. [Google Scholar] [CrossRef]
- Horoi, T.; Fukai, Y.; Mori, K. The phase diagram and superabundant vacancy formation in Fe-H alloys revisited. J. Alloys Compd. 2005, 404–406, 252–255. [Google Scholar] [CrossRef]
- Baek, U.B.; Choe, B.H.; Shim, J.H.; Kim, Y.U.; Kim, Y.S.; Kim, S.S.; Nam, S.H.; Hong, K. Hydrogen induced crack and phase transformation in hydrogen pressured tensile test of 316L stainless steel. Korean J. Met. Mater. 2015, 53, 82–89. [Google Scholar]
- ASTM International. ASTM E92-82, Standard Test Methods for Vickers Hardness of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 1997. [Google Scholar]
- Nibur, K.A.; Bahr, D.F.; Somerday, B.P. Hydrogen effects on dislocation activity in austenitic stainless steel. Acta Mater. 2006, 54, 2677–2684. [Google Scholar] [CrossRef]
- Robertson, I.M. The effect of hydrogen on dislocation dynamics. Eng. Fract. Mech. 1999, 64, 649–673. [Google Scholar] [CrossRef]
- Farrel, K.; Byun, T.S.; Hashimoto, N. Deformation mode maps for tensile deformation of neutron-irradiated structural alloys. J. Nucl. Mater. 2004, 335, 471–486. [Google Scholar] [CrossRef]
- Astafurova, E.G.; Zakharova, G.G.; Maier, H.J. Hydrogen-induced twinning in <001> Hadfield steel single crystals. Scr. Mater. 2010, 63, 1189–1192. [Google Scholar] [CrossRef]
- Rigsbee, J.M.; Benson, R.B. A TEM investigation of hydrogen-induced deformation twinning and associated martensite phases in 304-type stainless steel. J. Mater. Sci. 1977, 12, 406–409. [Google Scholar] [CrossRef]
- Kim, S.S.; Kim, D.W.; Kim, Y.S. Lattice contraction behavior of atomic ordering in Alloy 600. Korean J. Met. Mater. 2014, 52, 963–968. [Google Scholar] [CrossRef]
- Abraham, D.P.; Altstetter, C.J. Hydrogen-enhanced localization of plasticity in an austenitic stainless steel. Metall. Mater. Trans. A 1995, 26A, 2859–2871. [Google Scholar] [CrossRef]
- Marucco, A.; Nath, B.J. Effects of ordering on the properties of Ni-Cr alloys. J. Mater. Sci. 1988, 23, 2107–2114. [Google Scholar] [CrossRef]
- Jiang, X.J.; Noble, B.; Waterloo, G.; Tafto, J. Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys. Metall. Mater. Trans. A 2000, 31A, 339–348. [Google Scholar] [CrossRef]
- Luo, L.; Jie, W.; Xu, Y.; He, Y.; Xu, L.; Fu, L. HRTEM study of the ordered phases in Hg3In2Te6 crystals grown by Bridgman method. R. Soc. Chem. 2014, 16, 5073–5079. [Google Scholar] [CrossRef]
- Sato, K.; Ichinose, M.; Hitotsu, Y.; Inoue, Y. Effects of deformation induced transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys. ISIJ Int. 1989, 29, 868–877. [Google Scholar] [CrossRef]
- Marucco, A. Atomic ordering in the Ni-Cr-Fe system. Mater. Sci. Eng. A 1994, 189, 267–276. [Google Scholar] [CrossRef]
- Kimura, A.; Birnbaum, H.K. The effects of cathodically charged hydrogen on the flow stress of nickel and nickel-carbon alloys. Acta Metall. 1987, 35, 1077–1088. [Google Scholar] [CrossRef]
- Pashley, D.W.; Stowell, M.J. Electron microscopy and diffraction of twinned structures in evaporated films of gold. Philos. Mag. A 1963, 8, 1605–1632. [Google Scholar] [CrossRef]
- Cherns, D. Direct resolution of surface atomic steps by transmission electron microscopy. Philos. Mag. A 1974, 30, 549–556. [Google Scholar] [CrossRef]
- Gerold, V.; Karnthaler, H.P. On the origin of planar slip in F.C.C. alloys. Acta Metall. 1989, 37, 2177–2183. [Google Scholar] [CrossRef]
- Baker, I.; Munroe, P.R. Improving intermetallic ductility and toughness. JOM 1988, 40, 28–31. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, S.S.; Kim, D.W. Intergranular stress corrosion cracking (IGSCC) of Alloy 600 with cooling rate. In Proceedings of the 16th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Asheville, NC, USA, 11–15 August 2013. [Google Scholar]
- Kim, Y.S.; Kim, S.S. Origins of negative strain rate dependence of stress corrosion cracking initiation in Alloy 690, and intergranular crack formation in thermally treated Alloy 690. Metall. Mater. Trans. A 2016, 47A, 4353–4356. [Google Scholar] [CrossRef]
- Kohara, S.; Kuzynski, G.C. Internal stresses during ordering. Acta Metall. 1956, 2, 221–222. [Google Scholar] [CrossRef]
- Ehrnsten, U.; Saukkonen, T.; Karlsen, W.; Hanninen, H. Deformation localization and EAC in inhomogeneous microstructures of austenitic stainless steels. In Proceedings of the 14th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Virginia Beach, VA, USA, 23–27 August 2009; pp. 910–919. [Google Scholar]
- Kim, S.W.; Hwang, S.S.; Lee, J.M. Effect of local strain distribution on stress corrosion cracking of cold rolled Alloy 690 with inhomogenous microstructure. Corrosion 2015, 71, 1071–1081. [Google Scholar] [CrossRef]
- Park, K.T.; Kim, Y.S.; Lee, J.G.; Shin, D.H. Thermal stability and mechanical properties of ultrafine grained low carbon steel. Mater. Sci. Eng. A 2000, 293, 165–172. [Google Scholar] [CrossRef]
- Floreen, S.; Westbrook, J.H. Grain boundary segregation and the grain size dependence of strength of nickel-sulfur alloys. Acta Metall. 1969, 17, 1175–1181. [Google Scholar] [CrossRef]
- Okada, H.; Hosoi, Y.; Abe, S. Formation of cracks in austenitic stainless steels cathodically charged with hydrogen. Corrosion 1970, 26, 183–186. [Google Scholar] [CrossRef]
- Marquez, J.A.; Matsushima, I.; Uhlig, H.H. Effect of cold rolling on resistance of Ni-Fe alloys to hydrogen cracking. Corrosion 1970, 26, 315–322. [Google Scholar] [CrossRef]
- Baek, S.W.; Song, E.J.; Kim, J.H.; Jung, M.; Baek, U.B.; Nahm, S.H. Hydrogen embrittlement of 3-D printing manufactured austenitic stainless steel part for hydrogen service. Scr. Mater. 2017, 130, 87–90. [Google Scholar] [CrossRef]
- Han, G.; He, J.; Fukuyama, S.; Yokogawa, K. Effect of strain-induced martensite on hydrogen environment embrittlement on sensitized austenitic stainless steels at low temperatures. Acta Mater. 1998, 46, 4559–4570. [Google Scholar] [CrossRef]
- Briant, C.L. Hydrogen assisted cracking of sensitized 304 stainless steel. Metall. Trans. A 1978, 9A, 731–733. [Google Scholar] [CrossRef]
- Zhang, L.; Wen, M.; Imade, M.; Fukuyama, S.; Yokogawa, K. Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures. Acta Mater. 2008, 56, 3414–3421. [Google Scholar] [CrossRef]
- Mine, Y.; Narazaki, C.; Murakami, K.; Matsuoka, S.; Murakami, Y. Hydrogen transport in solution-treated and pre-strained austenitic stainless steels and its role in hydrogen-enhanced fatigue crack growth. Int. J. Hydrogen Energy 2009, 34, 1097–1107. [Google Scholar] [CrossRef]
- Papula, S.; Talonen, J.; Todoshchenko, O.; Hanninen, H. Effect of internal hydrogen on delayed hydride cracking of metastable low-nickel austenitic stainless steels. Metall. Mater. A 2014, 45A, 5270–5279. [Google Scholar] [CrossRef]
- Fallahmohammadi, E.; Bolzoni, F.; Fumagalli, G.; Re, G.; Benassi, G.; Lazzari, L. Hydrogen diffusion into three metallurgical microstructures of a C-Mn X65 and low alloy F22 sour service steel pipelines. Int. J. Hydrogen Energy 2014, 39, 13300–13313. [Google Scholar] [CrossRef]
Parameters | Testing Conditions | |
---|---|---|
Air | H2 | |
Amount of strain-induced martensite (SIM) (%) | 43 ± 4 | 15 ± 4 |
Hardness (HV) | 393 ± 15 | 345 ± 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.S.; Kim, S.S.; Choe, B.H. The Role of Hydrogen in Hydrogen Embrittlement of Metals: The Case of Stainless Steel. Metals 2019, 9, 406. https://doi.org/10.3390/met9040406
Kim YS, Kim SS, Choe BH. The Role of Hydrogen in Hydrogen Embrittlement of Metals: The Case of Stainless Steel. Metals. 2019; 9(4):406. https://doi.org/10.3390/met9040406
Chicago/Turabian StyleKim, Young Suk, Sung Soo Kim, and Byung Hak Choe. 2019. "The Role of Hydrogen in Hydrogen Embrittlement of Metals: The Case of Stainless Steel" Metals 9, no. 4: 406. https://doi.org/10.3390/met9040406
APA StyleKim, Y. S., Kim, S. S., & Choe, B. H. (2019). The Role of Hydrogen in Hydrogen Embrittlement of Metals: The Case of Stainless Steel. Metals, 9(4), 406. https://doi.org/10.3390/met9040406