Fabrication and Fatigue Behavior of Aluminum Foam Sandwich Panel via Liquid Diffusion Welding Method
Abstract
:1. Introduction
2. Materials and Experimental Methods
3. Results and Discussion
3.1. Microstructure
3.2. Peel Strength Test
3.3. Three-Point Bending Fatigue
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ashby, M.F.; Lu, T.J. Metals foam: A survey. Sci. China 2003, 46, 521–532. [Google Scholar] [CrossRef]
- Davies, G.J.; Zhen, S. Metallic foams: their production, properties and applications. J. Mater. Sci. 1983, 18, 1899–1911. [Google Scholar] [CrossRef]
- Alvandi-Tabrizi, Y.; Whisler, D.A.; Kim, H.; Rabiei, A. High strain rate behavior of composite metal foams. Mater. Sci. Eng. 2015, A631, 248–257. [Google Scholar] [CrossRef]
- Gui, M.C.; Wang, D.B.; Wu, J.J.; Yuan, G.J.; Li, C.G. Deformation and damping behaviors of foamed Al-Si-SiCp composite. Mater. Sci. Eng. 2000, A286, 282–288. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure & Properties; Cambridge University Press: Cambridge, UK, 1997; p. 510. [Google Scholar]
- Katona, B.; Szebényi, G.; Orbulov, I.N. Fatigue properties of ceramic hollow sphere filled aluminium matrix syntactic foams. Mater. Sci. Eng. 2017, A679, 350–357. [Google Scholar]
- Katona, B.; Szebényi, A.T.; Orbulov, I.N. Compressive characteristics and low frequency damping of aluminium matrix syntactic foams. Mater. Sci. Eng. 2019, A739, 140–148. [Google Scholar]
- Vendra, L.; Nevile, B.; Rabiel, A. Fatigue in aluminium-steel and steel-steel composite foams. Mater. Sci. Eng. 2009, A517, 146–153. [Google Scholar]
- Banhart, J.; Seeliger, H.W. Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications. Adv. Eng. Mater. 2008, 10, 793–802. [Google Scholar] [CrossRef]
- Garcia-Moreno, F. Commercial Applications of Metal Foams: Their Properties and Production. Materials 2018, 9, 85. [Google Scholar] [CrossRef]
- Crupi, V.; Epasto, G.; Guglielmino, E. Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam. Mar. Struct. 2013, 30, 74–96. [Google Scholar] [CrossRef]
- Golovin, I.S.; Sinning, H.R. Damping in some cellular metallic materials. J. Alloys Compd. 2003, 355, 2–9. [Google Scholar] [CrossRef]
- Yang, D.H.; Yang, S.R.; Wang, H.; Ma, A.B.; Jiang, J.H.; Chen, J.Q.; Wang, D.L. Compressive properties of cellular Mg foams fabricated by melt-foaming method. Mater. Sci. Eng. 2010, A527, 5405–5409. [Google Scholar] [CrossRef]
- Huang, Z.; Qin, Z.; Chu, F. Damping mechanism of elastic-viscoelastic-elastic sandwich structures. Compos. Struct. 2016, 153, 96–107. [Google Scholar] [CrossRef]
- Yu, G.C.; Feng, L.J.; Wu, L.Z. Thermal and mechanical properties of a multifunctional composite square honeycomb sandwich structure. Mater. Des. 2016, 102, 238–246. [Google Scholar] [CrossRef]
- Harte, A.M.; Fleck, N.A.; Ashby, M.F. Sandwich panel design using Aluminum alloy foam. Adv. Eng. Mater. 2000, 2, 219–222. [Google Scholar] [CrossRef]
- Hangai, Y.; Takahashi, K.; Yamaguchi, R.; Utsunomiya, T.; Kitahara, S.; Kuwazuru, O.; Yoshikawa, N. Nondestructive observation of pore structure deformation behavior of functionally graded Aluminum foam by X-ray computed tomography. Mater. Sci. Eng. 2012, A556, 678–684. [Google Scholar] [CrossRef]
- Chen, N.; Feng, Y.; Chen, J.; Li, B.; Chen, F.; Zhao, J. Vacuum Brazing Processes of Aluminum Foam. Rare Metal Mater. Eng. 2013, 42, 1118–1122. [Google Scholar]
- Matsumoto, R.; Tsuruoka, H.; Otsu, M.; Utsunomiya, H. Fabrication of skin layer on Aluminum foam surface by friction stir incremental forming and its mechanical properties. J. Mater. Process. Technol. 2015, 218, 23–31. [Google Scholar] [CrossRef]
- D’Urso, G.; Maccarini, G. The formability of Aluminum Foam Sandwich panels. Int. J. Mater. Form. 2012, 5, 243–257. [Google Scholar] [CrossRef]
- Olurin, O.B.; Fleck, N.A.; Ashby, M.F. Joining of Aluminum foam with fasteners and adhesives. J. Mater. Sci. 2000, 35, 1079–1085. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Fleck, N.A. High strain rate compressive behaviour of aluminium alloy foams. Int. J. Imapct Eng. 2000, 24, 277–298. [Google Scholar] [CrossRef] [Green Version]
- Jitai, N. Joining of Aluminium Alloy Sheets to Aluminium Alloy Foam Using Metal Glasses. Metals 2018, 8, 614. [Google Scholar]
- Duarte, I.; Krstulović-Opara, L.; Vesenjak, M. Axial crush behaviour of the aluminium alloy in-situ foam filled tubes with very low wall thickness. Compos. Struct. 2018, 192, 184–192. [Google Scholar] [CrossRef]
- Kitazono, K.; Kitajima, A.; Sato, E.; Matsushita, J.; Kuribayashi, K. Solid-state diffusion bonding of closed-cell Aluminum foams. Mater. Sci. Eng. 2002, A237, 128–132. [Google Scholar] [CrossRef]
- Ubertalli, G.; Ferrais, M.; Bangash, M.K. Joining of AL-6016 to Al-foam using Zn-based joining materials. Compsites Part A 2017, 96, 122–128. [Google Scholar] [CrossRef]
- ASTM_C393-C393M-06, Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexu-re; ASTM International: West Conshohocken, PA, America, 2006.
- GB/T 1457-2005, Test Method for Climbing Drum Peel Strength of Sandwich Constructions; Standards Press of China: Beijing, China, 2005.
- Wang, H.; Yang, D.; He, S.; He, D. Fabrication of open-cell Al foam core sandwich by vibration aided liquid phase bonding method and its mechanical properties. J. Mater. Sci. Technol. 2010, 26, 423–428. [Google Scholar] [CrossRef]
- Wan, L.; Huang, Y.; Lv, S.; Feng, J. Fabrication and interfacial characterization of Aluminum Foam Sandwich via fluxless soldering with surface abrasion. Compos. Struct. 2015, 123, 366–373. [Google Scholar] [CrossRef]
- Kotadia, H.R.; Das, A. Modification of solidification microstructure in hypo- and hyper-eutectic Al–Si alloys under high-intensity ultrasonic irradiation. Mater. Chem. Phys. 2011, 125, 853–859. [Google Scholar] [CrossRef]
- Xu, Z.; Yan, J.; Zhang, B.; Kong, X.; Yang, S. Behaviors of Oxide film at the ultrasonic aided interaction interface of Zn-Al alloy and Al2O3p/6061Al composites in air. Mater. Sci. Eng. 2006, A415, 80–86. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Cheng, X.; Chen, G.; Dai, Q. High-energy ultrasonic field effects on the microstructure and mechanical behaviors of A356 alloy. J. Alloys Compd. 2009, 470, 168–172. [Google Scholar] [CrossRef]
- Zheng, D.; Chen, R.; Ma, T.; Ding, H.; Su, Y.; Guo, J.; Fu, H. Microstructure modification and mechanical performances enhancement of Ti44Al6Nb1 Cr alloy by ultrasound treatment. J. Alloys Compd. 2017, 710, 409–417. [Google Scholar] [CrossRef]
- Harte, A.M.; Fleck, N.A.; Ashby, M.F. The fatigue strength of sandwich beams with an aluminium alloy foam core. Int. J. Fatigue 2001, 23, 499–507. [Google Scholar] [CrossRef]
- Burman, M.; Zenkert, D. Fatigue of foam core sandwich beams—1: undamaged specimens. Int. J. Fatigue 1997, 19, 551–561. [Google Scholar] [CrossRef]
- Linul, E.; Serban, D.A.; Marsavina, L.; Kovacik, J. Low-cycle fatigue behaviour of ductile closed-cell aluminium alloy foams. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 597–604. [Google Scholar] [CrossRef]
- Chen, C.; Harte, A.M.; Fleck, N.A. The plastic collapse of sandwich beams with a metallic foam. Int. J. Mech. Sci. 2001, 43, 1483–1506. [Google Scholar] [CrossRef]
- Duart, I.; Teixeir-Dias, F.; Graça, A.; Ferreira, A.J.M. Failure Modes and Influence of the Quasi-static Deformation Rate on the Mechanical Behavior of Sandwich Panels with Aluminum Foam Cores. Mech. Adv. Mater. Struct. 2010, 17, 335–342. [Google Scholar] [CrossRef]
Samples | Joint | Peel Strength (N·mm/mm) | Average |
---|---|---|---|
1 | adhesive | 25.2 | 27.5 |
2 | adhesive | 28.3 | |
3 | adhesive | 29.0 | |
4 | metallurgical | 147.3 | 140.0 |
5 | metallurgical | 135.1 | |
6 | metallurgical | 137.6 |
Samples | Joint | Max Loading (N) | Life Cycles | Average |
---|---|---|---|---|
1 | metallurgical | 5300 | 1438 | 1238 |
2 | metallurgical | 5300 | 1092 | |
3 | metallurgical | 5300 | 1184 | |
4 | metallurgical | 4900 | 8890 | 9639 |
5 | metallurgical | 4900 | 10,435 | |
6 | metallurgical | 4900 | 9592 | |
7 | metallurgical | 4500 | 37,623 | 41,881 |
8 | metallurgical | 4500 | 46,071 | |
9 | metallurgical | 4500 | 41,949 | |
10 | metallurgical | 4000 | 147,892 | 141,186 |
11 | metallurgical | 4000 | 152,377 | |
12 | metallurgical | 4000 | 123,289 | |
13 | metallurgical | 3800 | 325,071 | 296,950 |
14 | metallurgical | 3800 | 289,765 | |
15 | metallurgical | 3800 | 276,014 | |
16 | adhesive | 5300 | 123 | 157 |
17 | adhesive | 5300 | 186 | |
18 | adhesive | 5300 | 162 | |
19 | adhesive | 4300 | 3981 | 3592 |
20 | adhesive | 4300 | 3032 | |
21 | adhesive | 4300 | 3763 | |
22 | adhesive | 3700 | 15,769 | 15,861 |
23 | adhesive | 3700 | 14,291 | |
24 | adhesive | 3700 | 17,523 | |
25 | adhesive | 3500 | 260,817 | 267,345 |
26 | adhesive | 3500 | 291,082 | |
27 | adhesive | 3500 | 250,136 | |
28 | adhesive | 3350 | 883,188 | 958,252 |
29 | adhesive | 3350 | 1,078,321 | |
30 | adhesive | 3350 | 913,247 | |
31 | adhesive | 3150 | 1,213,484 | 1,320,030 |
32 | adhesive | 3150 | 1,456,872 | |
33 | adhesive | 3150 | 1,289,734 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, C.; Hu, Z.; Mo, F.; Wang, Y. Fabrication and Fatigue Behavior of Aluminum Foam Sandwich Panel via Liquid Diffusion Welding Method. Metals 2019, 9, 582. https://doi.org/10.3390/met9050582
Yao C, Hu Z, Mo F, Wang Y. Fabrication and Fatigue Behavior of Aluminum Foam Sandwich Panel via Liquid Diffusion Welding Method. Metals. 2019; 9(5):582. https://doi.org/10.3390/met9050582
Chicago/Turabian StyleYao, Cheng, Zhengfei Hu, Fan Mo, and Yu Wang. 2019. "Fabrication and Fatigue Behavior of Aluminum Foam Sandwich Panel via Liquid Diffusion Welding Method" Metals 9, no. 5: 582. https://doi.org/10.3390/met9050582
APA StyleYao, C., Hu, Z., Mo, F., & Wang, Y. (2019). Fabrication and Fatigue Behavior of Aluminum Foam Sandwich Panel via Liquid Diffusion Welding Method. Metals, 9(5), 582. https://doi.org/10.3390/met9050582