Numerical Simulation Analysis of New Steel Sets Used for Roadway Support in Coal Mines
Abstract
:1. Introduction
2. Description of the Studied Site
3. Materials and Methods
3.1. Materials
- (1)
- Limit the horizontal displacement of the model in the Z direction, and apply boundary conditions to the bottom arch to constrain the displacements in the X, Y, and Z directions.
- (2)
- Since the deformation of the roof and the two sides are equal in any direction [27], we set the load of the top arch and the two sides to be equal. Specifically, a vertical downward displacement load of 0.3 m is applied to the top arch, a horizontal leftward 0.15 m displacement load is applied to the left bottom corner, and a horizontal rightward 0.15 m displacement load is applied to the right bottom corner.
3.2. Numerical Model
3.3. Scheme of Improved Steel Sets
4. Results and Discussion
4.1. The Stress and Deformation Analysis
- (1)
- The maximum stress and maximum deformation of the RB sets and the FB sets are smaller than those of the traditional set.
- (2)
- The maximum stress concentration of the set is the top arch, shoulder, and bottom arch of the set.
- (3)
- The position of the maximum deformation is also the top arch, shoulder, and bottom arch of the set.
4.2. The Stress-Strain Analysis
4.3. Summary
4.4. Comprehensive Analysis on Improved Set
4.4.1. Comprehensive model of Improved Set
4.4.2. Comparative Analysis
5. Engineering Application
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aksoy, C.O.; Ogul, K.; Topal, I.; Ozer, S.C.; Ozacar, V.; Posluk, E. Numerical modeling of non-deformable support in swelling and squeezing rock. Int. J. Rock Mech. Min. Sci. 2012, 52, 61–70. [Google Scholar] [CrossRef]
- Liu, H.H.; Rutqvist, J.; Birkholzer, J.T. Constitutive relationships for elastic deformation of clay rock: Data analysis. Rock Mech. Rock Eng. 2011, 44, 463–468. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Guo, C.B.; Yao, X.; Qu, Y.X.; Zhou, N.J. Engineering geological characterization of clayey diatomaceous earth deposits encountered in highway projects in the Tengchong region, Yunnan, China. Eng. Geol. 2013, 167, 95–104. [Google Scholar] [CrossRef]
- Zhang, G.H.; Jiao, Y.Y.; Wang, H.; Cheng, Y.; Chen, L.B. On the mechanism of inrush hazards when Denghuozhai Tunnel passing through granite contact zone. Tunn. Undergr. Sp. Technol. 2017, 68, 174–186. [Google Scholar] [CrossRef]
- He, M.C.; Leal e Sousa, R.; André, M.; Eurípedes Jr., V.; Ribeiro e Sousa, L.; Chen, X.N. Analysis of excessive deformations in tunnels for safety evaluation. Tunn. Undergr. Sp. Technol. 2015, 45, 190–202. [Google Scholar]
- Tan, Y.L.; Yu, F.H.; Ning, J.G.; Zhao, T.B. Design and construction of entry retaining wall along a gob side under hard roof stratum. Int. J. Rock Mech. Min. Sci. 2015, 77, 115–121. [Google Scholar] [CrossRef]
- Zhao, T.B.; Guo, W.Y.; Tan, Y.L.; Lu, C.P.; Wang, C.W. Case histories of rock bursts under complicated geological conditions. Bull. Eng. Geol. Environ. 2017, 77, 1529–1545. [Google Scholar] [CrossRef]
- Liu, X.S.; Tan, Y.L.; Ning, J.G.; Lu, Y.W.; Gu, Q.H. Mechanical properties and damage constitutive model of coal in coal-rock combined body. Int. J. Rock Mech. Min. Sci. 2018, 110, 140–150. [Google Scholar] [CrossRef]
- Guo, W.Y.; Tan, Y.L.; Yu, F.H.; Zhao, T.B.; Hu, S.C.; Huang, D.M.; Qin, Z.W. Mechanical behavior of rock-coal-rock specimens with different coal thicknesses. Geomech. Eng. 2018, 15, 1017–1027. [Google Scholar]
- Ning, J.G.; Liu, X.S.; Tan, J.; Gu, Q.H.; Tan, Y.L.; Wang, J. Control mechanisms and design for a ’col-backfill-gangue’ support system for coal mine gob-side entry retaining. Int. J. Oil Gas Coal Technol. 2018, 18, 444–465. [Google Scholar] [CrossRef]
- Zheng, X.G.; Feng, X.W.; Zhang, N.; Gong, L.Y.; Hua, J.B. Serial decoupling of bolts in coal mine roadway supports. Arab. J. Geosci. 2015, 8, 6709–6722. [Google Scholar] [CrossRef]
- Mohammadi, M.M.; Bagloo, H. Rock bolt supporting factor: Rock bolting capability of rock mass. Bull. Eng. Geol. Environ. 2017, 76, 231–239. [Google Scholar] [CrossRef]
- Li, W.T.; Yang, N.; Yang, B.; Ma, H.Y.; Li, T.C.; Wang, Q.; Wang, G.; Du, Y.T.; Zhao, M.X. An improved numerical simulation approach for arch-bolt supported tunnels with large deformation. Tunn. Undergr. Sp. Technol. 2018, 77, 1–12. [Google Scholar] [CrossRef]
- Parameter analysis of anchor bolt support for large-span and jointed rock mass. J. Cent. South Univ. Technol. 2005, 12, 483–487.
- Wang, F.T.; Zhang, C.; Wei, S.F.; Zhang, X.G.; Guo, S.H. Whole section anchor- grouting reinforcement technology and its application in underground roadways with loose and fractured surrounding rock. Tunn. Undergr. Sp. Technol. 2016, 51, 133–143. [Google Scholar]
- Yu, S.F.; Wu, A.X.; Wang, Y.M.; Li, T. Pre-reinforcement grout in fractured rock masses and numerical simulation for optimizing shrinkage stoping configuration. J. Cent. South Univ. 2017, 24, 2924–2931. [Google Scholar] [CrossRef]
- Chen, Y.L.; Meng, Q.B.; Guang, X.B.; Wu, H.S.; Zhang, G.M. Bolt-grouting combined support technology in deep soft rock roadway. Int. J. Min. Sci. Technol. 2016, 26, 777–785. [Google Scholar] [CrossRef]
- Yang, S.Q.; Chen, M.; Jing, H.W.; Chen, K.F.; Meng, B. A case study on large deformation failure mechanism of deep soft rock roadway in Xin’An coal mine, China. Eng. Geol. 2017, 217, 89–101. [Google Scholar] [CrossRef]
- He, M.C. Latest progress of soft rock mechanics and engineering in China. J. Rock Mech. Geotech. Eng. 2014, 6, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.M.; Wu, A.X.; Wang, Y.M.; Chen, X.; Yan, R.F.; Ma, H.J. Study on repair control technology of soft surrounding rock roadway and its application. Eng. Fail. Anal. 2018, 92, 443–455. [Google Scholar] [CrossRef]
- Shen, B.T. Coal mine roadway stability in soft rock: A case study. Rock Mech. Rock Eng. 2014, 47, 2225–2238. [Google Scholar] [CrossRef]
- Liu, Y.W. Research of shed-cable supporting technology & regularity of minig roadway pressure in three-soft seam. Appl. Mech. Mater. 2013, 353–356, 1753–1758. [Google Scholar]
- Stefano, G.; Giulia, M.; Luisa, R.; Giacomo, T. Failure modes prediction of masonry voussoir arches on moving supports. Eng. Struct. 2018, 173, 706–717. [Google Scholar]
- Brodsky, A.; Yankelevsky, D.Z. Resistance of reinforced concrete frames with masonry infill walls to in-plane gravity loading due to loss of a supporting column. Eng. Struct. 2017, 140, 134–150. [Google Scholar] [CrossRef]
- Jiao, Y.Y.; Song, L.; Wang, X.Z.; Coffi, A.A. Improvement of the U-shaped steel sets for supporting the roadways in loose thick coal seam. Int. J. Rock Mech. Min. Sci. 2013, 60, 19–25. [Google Scholar] [CrossRef]
- Zhang, J.P.; Liu, L.M.; Cao, J.Z.; Yan, X.; Zhang, F.T. Mechanism and application of concrete-filled steel tubular support in deep and high stress roadway. Constr. Build. Mater. 2018, 186, 233–246. [Google Scholar] [CrossRef]
- Li, Q.H.; Shi, W.P.; Yang, R.S. Deformation mechanisms in a coal mine roadway in extremely swelling soft rock. SpringerPlus 2016, 5, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Q.B.; Han, L.J.; Yu, X.; Li, H.; Wen, S.Y.; Zhang, J. Numerical simulation study of the failure evolution process and failure mode of surrounding rock in deep soft rock roadways. Inter. J. Min. Sci. Technol. 2016, 26, 209–221. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, R.; Jiang, B.; Li, S.C.; He, M.C.; Sun, H.B.; Wang, L.; Qin, Q.; Yu, H.C.; Luan, Y.C. Study on failure mechanism of roadway with soft rock in deep coal mine and confined concrete support system. Eng. Fail. Anal. 2017, 81, 155–177. [Google Scholar] [CrossRef]
- Yang, R.S.; Li, Y.L.; Guo, D.M.; Yao, L.; Yang, T.M.; Li, T.T. Failure mechanism and control technology of water-immersed roadway in high-stress and soft rock in a deep mine. Inter. J. Min. Sci. Technol. 2017, 27, 245–252. [Google Scholar] [CrossRef]
- Fang, S.L.; Zhang, J. In-situ measure to internal stress of shotcrete layer in soft-rock roadway. Int. J. Coal Sci. Technol. 2014, 1, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.H.; Wu, H.Y.; Yang, B.S.; Li, Q.Q. Support failure of a high-stress soft-rock roadway in deep coal mine and the equalized yielding support technology: A case study. Int. J. Coal Sci. Technol. 2015, 2, 279–286. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Wang, W.M.; Wang, L. Response models of weakly consolidated soft rock roadway under different interior pressures considering dilatancy effect. J. Cent. South Univ. 2013, 20, 3736–3744. [Google Scholar] [CrossRef]
- Li, Q. Study on Instability Mechanism of Soft Rock Roadway and its Control in No.1 Mine of Chagannuoer. Ph.D. Thesis, China University of Mining and Technology (Beijing), Beijing, China, June 2013. [Google Scholar]
- Li, Q.H.; Yang, R.S.; Li, J.K.; Wang, H.; Wen, Z.J. Strength and Cost Analysis of New Steel Sets as Roadway Support Project in Coal Mines. Adv. Mater. Sci. Eng. 2018, 3927843, 1–9. [Google Scholar] [CrossRef]
Name | Porosity (%) | Compressive Strength (Aver-Age)/MPa | Tensile Strength (Average)/MPa | Apparent Cohesion (Average)/MPa | Internal Friction Angle/(°) |
---|---|---|---|---|---|
Mudstone/carbon mudstone | 1.66–2.14(2.0) | 26.20–54.11 | 0.12–5.12(1.71) | 0.24–0.39(0.31) | 25.16–29.01 |
Siltstone | 2.01–2.65(2.2) | 17.48–27.13 | 0.64–8.00(2.26) | 0.23–0.50(0.38) | 13.70–25.50 |
Coal | 1.16–1.35(1.3) | 25.40–45.72 | 1.18–9.44(3.44) | 0.42–1.02(0.66) | 27.05–32.03 |
Parameters | Value |
---|---|
Pattern | 112 |
Unit mass m/(kg/m) | 31.18 |
Sectional area A/(cm2) | 31.72 |
Section thickness at neutral axis d/(cm) | 1.1 |
Moment of inertia I/(cm4) | 867.1 |
Elastic modulus E/(GPa) | 206 |
Section modulus W/(cm3) | 144.5 |
Static moment S/(cm3) | 96.044 |
Poisson’s ratio | 0.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Li, J.; Zhang, J.; Wang, C.; Fang, K.; Liu, L.; Wang, W. Numerical Simulation Analysis of New Steel Sets Used for Roadway Support in Coal Mines. Metals 2019, 9, 606. https://doi.org/10.3390/met9050606
Li Q, Li J, Zhang J, Wang C, Fang K, Liu L, Wang W. Numerical Simulation Analysis of New Steel Sets Used for Roadway Support in Coal Mines. Metals. 2019; 9(5):606. https://doi.org/10.3390/met9050606
Chicago/Turabian StyleLi, Qinghai, Jingkai Li, Jinpeng Zhang, Changxiang Wang, Kai Fang, Limin Liu, and Wenjing Wang. 2019. "Numerical Simulation Analysis of New Steel Sets Used for Roadway Support in Coal Mines" Metals 9, no. 5: 606. https://doi.org/10.3390/met9050606
APA StyleLi, Q., Li, J., Zhang, J., Wang, C., Fang, K., Liu, L., & Wang, W. (2019). Numerical Simulation Analysis of New Steel Sets Used for Roadway Support in Coal Mines. Metals, 9(5), 606. https://doi.org/10.3390/met9050606