Developing Improved Mechanical Property and Corrosion Resistance of Mg-9Li Alloy via Solid-Solution Treatment
Abstract
:1. Introduction
2. Experimental
2.1. Solid-Solution Treatment
2.2. Microstructure Characterization
2.3. Mechanical Test
2.4. Corrosion Test
3. Result and Discussion
3.1. Microstructure Characteristic
3.2. Mechanical Property and Strengthening Mechanism
3.3. Corrosion Behavior and Corrosion-Resistance Enhancement Mechanism
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shen, G.J.; Duggan, B.J. Texture development in a cold-rolled and annealed body-centered-cubic Mg-Li alloy. Metall. Mater. Trans. A 2007, 38, 2593–2601. [Google Scholar] [CrossRef]
- Polmear, I.J. Light Metals, 3rd ed.; Butterworth and Heinemann: Oxford, UK, 1995. [Google Scholar]
- Haferkamp, H.; Boehm, R.; Holzkamp, U.; Jaschik, C.; Kaese, V.; Niemeyer, M. Alloy development, processing and applications in magnesium lithium alloys. Mater. Trans. 2001, 42, 1160–1166. [Google Scholar] [CrossRef]
- Agnew, S.R.; Horton, J.A.; Yoo, M.H. Transmission electron microscopy investigation of 〈c+a〉 Dislocations in Mg and α-solid solution Mg-Li alloys. Metall. Mater. Trans. A 2002, 33, 851–858. [Google Scholar] [CrossRef]
- Li, C.Q.; Xu, D.K.; Wang, B.J.; Sheng, L.Y.; Qiao, Y.X.; Han, E.H. Natural ageing responses of duplex structured Mg-Li based alloys. Sci. Rep. UK 2017, 7, 40078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Counts, W.A.; Friák, M.; Raabe, D.; Neugebauer, J. Using ab initio calculations in designing bcc Mg–Li alloys for ultra-lightweight applications. Acta Mater. 2009, 57, 69–76. [Google Scholar] [CrossRef]
- Shin, I.; Carter, E.A. First-principles simulations of plasticity in body-centered-cubic magnesium–lithium alloys. Acta Mater. 2014, 64, 198–207. [Google Scholar] [CrossRef]
- Feng, S.; Liu, W.C.; Zhao, J.; Wu, G.H.; Zhang, H.H.; Ding, W.J. Effect of extrusion ratio on microstructure and mechanical properties of Mg–8Li–3Al–2Zn–0.5Y alloy with duplex structure. Mater. Sci. Eng. A 2007, 692, 9–16. [Google Scholar] [CrossRef]
- Pugazhendhi, B.S.; Kar, A.; Sinnaeruvadi, K.; Suwas, S. Effect of aluminium on microstructure, mechanical property and texture evolution of dual phase Mg-8Li alloy in different processing conditions. Arch. Civ. Mech. Eng. 2018, 18, 1332–1344. [Google Scholar] [CrossRef]
- Wu, R.Z.; Qu, Z.K.; Zhang, M.L. Review on the influences of alloying elements on the microstructure and mechanical properties of Mg-Li base alloys. Rev. Adv. Mater. Sci. 2010, 24, 35–43. [Google Scholar]
- Zhang, T.L.; Tokunaga, T.; Ohno, M.; Wu, R.Z.; Zhang, M.L.; Matsuura, K. Low temperature superplasticity of a dual-phase Mg-Li-Zn alloy processed by a multi-mode deformation process. Mater. Sci. Eng. A 2018, 737, 61–68. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, M.L.; Niu, Z.Y.; Liu, B. Influence of rare Earth elements on microstructure and mechanical properties of Mg-Li alloys. J. Rare Earth. 2006, 24, 797–800. [Google Scholar]
- Guo, J.; Chang, L.L.; Zhao, Y.R.; Jin, Y.P. Effect of Sn and Y addition on the microstructural evolution and mechanical properties of hot-extruded Mg-9Li-3Al alloy. Mater. Charact. 2019, 148, 35–42. [Google Scholar] [CrossRef]
- Cao, F.R.; Zhou, B.J.; Ding, X.; Zhang, J.; Xu, G.M. Mechanical properties and microstructural evolution in a superlight Mg-7.28Li-2.19Al-0.091Y alloy fabricated by rolling. J. Alloy. Compd. 2018, 745, 436–445. [Google Scholar] [CrossRef]
- Kudela, S. Magnesium-lithium matrix composites-An overview. Int. J. Mater. Prod. Tec. 2013, 18, 003587. [Google Scholar] [CrossRef]
- Fei, P.F.; Qu, Z.K.; Wu, R.Z. Microstructure and hardness of Mg–9Li–6Al–xLa (x = 0, 2, 5) alloys during solid solution treatment. Mater. Sci. Eng. A 2015, 625, 169–176. [Google Scholar] [CrossRef]
- Ji, H.; Peng, X.; Zhang, X.L.; Liu, W.C.; Wu, G.H.; Zhang, L.; Ding, W.J. Balance of mechanical properties of Mg-8Li-3Al-2Zn-0.5Y alloy by solution and low-temperature aging treatment. J. Alloy. Compd. 2019, 791, 655–664. [Google Scholar] [CrossRef]
- Nayeb-Hashemi, A.A.; Clark, J.B. Phase Diagrams of Binary Magnesium Alloys; ASM International: Metals Park, OH, USA, 1988; pp. 184–194. [Google Scholar]
- Kral, M.V.; Muddle, B.C.; Nie, J.F. Crystallography of the bcc/hcp transformation in a Mg-8Li alloy. Mater. Sci. Eng. A 2007, 460, 227–232. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Wang, S.D.; Xu, D.K.; Wang, B.J.; Sheng, L.Y.; Qiao, Y.X.; Han, E.H.; Dong, C. Influence of phase dissolution and hydrogen absorption on the stress corrosion cracking behavior of Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy in 3.5 wt% NaCl solution. Corros. Sci. 2018, 142, 185–200. [Google Scholar] [CrossRef]
- Du, B.N.; Xiao, Z.P.; Qiao, Y.X.; Zheng, L.; Yu, B.Y.; Xu, D.K.; Sheng, L.Y. Optimization of microstructure and mechanical property of a Mg-Zn-Y-Nd alloy by extrusion process. J. Alloy. Compd. 2019, 775, 990–1001. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, X.; Zhang, M.L.; Gao, L.L.; Wu, R.Z. Electrochemical characterization of the corrosion of a Mg-Li Alloy. Mater. Lett. 2008, 62, 2177–2180. [Google Scholar] [CrossRef]
- Zeng, R.C.; Sun, L.; Zheng, Y.F.; Cui, H.Z.; Han, E.H. Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: The influence of microstructural features. Corros. Sci. 2014, 79, 69–82. [Google Scholar] [CrossRef]
- Song, Y.W.; Shan, D.Y.; Chen, R.S.; Han, E.H. Corrosion characterization of Mg-8Li alloy in NaCl solution. Corros. Sci. 2009, 51, 1087–1094. [Google Scholar] [CrossRef]
- Liu, G.; Xie, W.; Wei, G.B.; Yang, Y.; Liu, J.W.; Xu, T.C.; Xie, W.D.; Peng, X.D. Dynamic recrystallization behavior and corrosion resistance of a dual-phase Mg-Li alloy. Materials 2018, 11, 408. [Google Scholar] [CrossRef]
- Xu, W.; Birbilis, N.; Sha, G.; Wang, Y.; Daniels, J.E.; Xiao, Y.; Ferry, M. A high-specific-strength and corrosion-resistant magnesium alloy. Nat. Mater. 2015, 14, 1229–1343. [Google Scholar] [CrossRef]
- Li, C.Q.; Xu, D.K.; Chen, X.B.; Wang, B.J.; Wu, R.Z.; Han, E.H.; Birbilis, N. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys. Electrochim. Acta 2018, 260, 55–64. [Google Scholar] [CrossRef]
- Song, G.L.; Unocic, K.A. The anodic surface film and hydrogen evolution on Mg. Corros. Sci. 2015, 98, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Jiang, B.; Li, R.H.; Yin, H.M.; Al-Ezzi, S. Grain refinement mechanism of the As-cast and As-extruded Mg–14Li alloys with Al or Sn addition. Metals 2017, 7, 172. [Google Scholar] [CrossRef]
- Su, Q.; Xu, J.; Li, Y.Q.; Yoon, J.I.; Shan, D.B.; Guo, B.; Kim, H.S. microstructural evolution and mechanical properties in superlight Mg-Li alloy processed by high-pressure torsion. Materials 2018, 11, 598. [Google Scholar] [CrossRef]
- Christian, J.W. The Theory of Transformations in Metals and Alloys, Part I, 2nd ed.; Pergamon Press: Oxford, UK, 1975; p. 452. [Google Scholar]
- Straumal, B.B.; Kucheev, Y.O.; Efron, L.I.; Petelin, A.L.; Dutta Majumdar, J.; Manna, I. Complete and incomplete wetting of ferrite grain boundaries by austenite in the low-alloyed ferritic steel. JMEPEG 2012, 21, 667–670. [Google Scholar] [CrossRef]
- Straumal, A.B.; Bokstein, B.S.; Petelin, A.L.; Straumal, B.B.; Baretzky, B.; Rodin, A.O.; Nekrasov, A.N. Apparently complete grain boundary wetting in Cu–In alloys. J. Mater. Sci. 2012, 47, 8336–8370. [Google Scholar] [CrossRef]
- López, G.A.; Mittemeijer, E.J.; Straumal, B.B. Grain boundary wetting by a solid phase; Microstructural development in a Zn–5 wt% Al alloy. Acta Mater. 2004, 52, 4537–4545. [Google Scholar] [CrossRef]
- Straumal, B.B.; Kogtenkova, O.A.; Murashkin, M.Yu.; Bulatov, M.F.; Czeppe, T.; Zięba, P. Grain boundary wetting transition in Al–Mg alloys. Mater. Lett. 2017, 186, 82–85. [Google Scholar] [CrossRef]
- Hsu, C.C.; Wang, J.Y. Room temperature aging characteristic of MgLiAlZn alloy. Mater. Trans. 2008, 11, 2728–2731. [Google Scholar] [CrossRef]
- Chiu, C.H.; Wu, H.Y.; Wang, J.U.; Lee, S. Microstructure and mechanical behavior of LZ91 Mg alloy processed by rolling and heat treatments. J. Alloy. Compd. 2008, 460, 246–252. [Google Scholar] [CrossRef]
- Hansen, N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, M.P.; Chen, X.F.; Cao, Y.; Roven, H.J.; Murashkin, M.; Valiev, R.Z.; Zhou, H. Effect of Mg on microstructure and mechanical properties of Al-Mg alloy produced by high pressure torsion. Scr. Mater. 2019, 159, 137–141. [Google Scholar] [CrossRef]
- Ma, X.L.; Huang, C.X.; Xu, W.Z.; Zhou, H.; Wu, X.L.; Zhu, Y.T. Strain hardening and ductility in a coarse-grain/nanostructure laminate material. Scr. Mater. 2015, 103, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.L.; Huang, C.X.; Moering, J.; Ruppert, M.; Hoppel, H.W.; Goken, M.; Narayan, J.; Zhu, Y.T. Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Mater. 2016, 116, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Huang, C.H.; Sha, X.C.; Xiao, L.R.; Ma, X.L.; Höppel, H.W.; Göken, M.; Wu, X.L.; Ameyama, K.; Han, X.D.; et al. In-situ observation of dislocation dynamics near hterostructured interface. Mater. Res. Lett. 2019, 7, 376–382. [Google Scholar] [CrossRef]
- Xiao, L.R.; Cao, Y.; Li, S.; Zhou, H.; Ma, X.L.; Mao, L.; Sha, X.C.; Wang, Q.D.; Zhu, Y.T.; Han, X.D. The formation mechanism of a novel interfacial phase with high thermal stability in a Mg-Gd-Ag-Zr alloy. Acta Mater. 2019, 162, 214–225. [Google Scholar] [CrossRef]
- Zhou, H.; Cheng, G.M.; Ma, X.L.; Xu, W.Z.; Mathaudhu, S.N.; Wang, Q.D.; Zhu, Y.T. Effect of Ag on interfacial segregation in Mg-Gd-Y-(Ag)_Zr alloy. Acta Mater. 2015, 95, 20–29. [Google Scholar] [CrossRef]
- Agnew, S.R.; Duygulu, Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 2005, 21, 1161–1193. [Google Scholar] [CrossRef]
- Zhu, G.M.; Wang, L.Y.; Zhou, H.; Wang, J.H.; Shen, Y.; Tu, P.; Zhu, H.; Liu, W.; Jin, P.P.; Zeng, X.Q. Improving ductility of a Mg alloy via non-basal <a> slip induced by Ca addition. Int. J. Plast. 2019, 120, 164–179. [Google Scholar] [CrossRef]
- Yu, Q.; Qi, L.; Mishra, R.K.; Li, J.; Minor, A.M. Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale. Proc. Natl. Acad. Sci. USA 2013, 110, 13289–13293. [Google Scholar] [CrossRef] [Green Version]
- Edalati, K.; Yamamoto, A.; Horita, Z.; Ishihara, T. High-pressure torsion of pure magnesium: Evolution ofmechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scr. Mater. 2011, 64, 880–883. [Google Scholar] [CrossRef]
- Song, D.; Li, C.; Liang, N.N.; Yang, F.L.; Jiang, J.H.; Sun, J.P.; Wu, G.S.; Ma, A.B.; Ma, X.L. Simultaneously improving corrosion resistance and mechanical properties of a magnesium alloy via equal-channel angular pressing and post water annealing. Mater. Des. 2019, 166, 107621. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Liao, X. Retaining ductility. Nat. Mater. 2004, 3, 351–352. [Google Scholar] [CrossRef]
- Huang, C.X.; Hu, W.P.; Wang, Q.Y.; Wang, C.; Yang, G.; Zhu, Y.T. An ideal ultrafine-grained structure for high strength and high ductility. Mater. Res. Lett. 2014, 3, 88–94. [Google Scholar] [CrossRef]
- Dong, H.W.; Wang, L.M.; Liu, K.; Wang, L.D.; Jiang, B.; Pan, F.S. Microstructure and deformation behaviors of two Mg–Li dual-phase alloys with an increasing tensile speed. Mater. Des. 2016, 90, 157–164. [Google Scholar]
- Molodov, K.D.; Molodov, D.A. Grain boundary mediated plasticity: On the evaluation of grain boundary migration-shear coupling. Acta Mater. 2018, 153, 336–353. [Google Scholar] [CrossRef]
- Hu, W.W.; Yang, Z.Q.; Ye, H.Q. Dislocations and their interactions with other crystal defects in a Mg alloy. Acta Mater. 2017, 124, 372–382. [Google Scholar] [CrossRef]
- Song, D.; Ma, A.B.; Jiang, J.H.; Lin, P.H.; Yang, D.H.; Fan, J.F. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros. Sci. 2010, 52, 481–490. [Google Scholar] [CrossRef]
- Song, D.; Ma, A.B.; Jiang, J.H.; Lin, P.H.; Yang, D.H.; Fan, J.F. Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing. Corros. Sci. 2011, 53, 362–373. [Google Scholar] [CrossRef]
- Song, D.; Li, C.; Zhang, L.W.; Ma, X.L.; Guo, G.H.; Zhang, F.; Jiang, J.H.; Ma, A.B. Decreasing bio-degradation rate of the Hydrothermal-Synthesizing Coated Mg Alloy via Pre-Solid-Solution Treatment. Materials 2017, 10, 858. [Google Scholar] [CrossRef]
- Guo, G.H.; Song, D.; Jiang, J.H.; Ma, A.B.; Zhang, L.W.; Li, C. Effect of synthesizing temperature on microstructure and electrochemical property of the hydrothermal conversion coating on Mg-2Zn-0.5Mn-Ca-Ce alloy. Metals 2016, 6, 44. [Google Scholar] [CrossRef]
- Qiao, Y.X.; Cai, X.; Cui, J.; Li, H.B. Passivity and semiconducting behavior of a high nitrogen stainless steel in acidic NaCl solution. Adv. Sci. Eng. 2016, 2016, 6065481. [Google Scholar] [CrossRef]
- Mosiałek, M.; Mordarski, G.; Nowak, P.; Simka, W.; Nawrat, G.; Hanke, M.; Socha, R.P. Phosphate-permanganate conversion coatings on the AZ81 magnesium alloy: SEM, EIS and XPS studies. Surf. Coat. Technol. 2011, 206, 51–62. [Google Scholar] [CrossRef]
- Rzazvi, M.; Fathi, M.; Savabi, O.; Vashaee, D.; Tayebi, L. In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants. Mater. Sci. Eng. C 2014, 41, 168–177. [Google Scholar] [CrossRef]
- Wang, Z.B.; Hu, H.X.; Zheng, Y.G.; Ke, W.; Qiao, Y.X. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid. Corros. Sci. 2016, 103, 50–65. [Google Scholar] [CrossRef]
- Qiao, Y.X.; Tian, Z.H.; Cai, X.; Chen, J.; Wang, Y.X.; Song, Q.N.; Li, H.B. Cavitation erosion behaviors of a nickel-free high-nitrogen stainless steel. Tribol. Lett. 2019, 67, 1–9. [Google Scholar] [CrossRef]
- Qiao, Y.X.; Zhou, Y.; Chen, S.J.; Song, Q.N. Effect of bobbin tool friction stir welding on microstructure and corrosion behavior of 6061-T6 aluminum alloy joint in 3.5% NaCl solution. Acta Metall. Sin. 2016, 52, 1395–1402. [Google Scholar]
- Frankel, G.S.; Sridhar, N. Understanding localized corrosion. Mater. Today 2008, 11, 38–44. [Google Scholar] [CrossRef]
Mg | Li | Zn | Si | Ce | Fe | Mn |
---|---|---|---|---|---|---|
Balance | 8.809 | 0.014 | 0.012 | 0.011 | 0.010 | 0.024 |
Samples | YTS (MPa) | UTS (MPa) | Eu (%) | Ef (%) |
---|---|---|---|---|
Cast alloy | 62.0 ± 5.1 | 100.2 ± 5.0 | 14.3 ± 1.0 | 32.0 ± 4.2 |
SS alloy | 110.2 ± 5.2 | 120.3 ± 5.5 | 6.2 ± 0.5 | 45.5 ± 5.0 |
Samples and Immersion Time (h) | RS (Ω∙cm2) | Rt (Ω∙cm2) | Y0 (Ω−1∙cm−2∙s−n × 10−6) | n (×10−2) | |
---|---|---|---|---|---|
Cast alloy | 0 | 39.2 ± 3.3 | 9.7 ± 0.5 × 102 | 12.2 ± 0.2 | 89.8 ± 0.2 |
0.5 | 49.1 ± 3.0 | 13.5 ± 0.8 × 102 | 22.7 ± 0.2 | 84.6 ± 0.2 | |
2 | 42.0 ± 3.2 | 16.1 ± 1.0 × 102 | 19.3 ± 0.2 | 87.7 ± 0.3 | |
4 | 80.3 ± 5.1 | 20.1 ± 1.2 × 102 | 21.1 ± 0.2 | 87.5 ± 0.2 | |
6 | 39.3 ± 3.2 | 16.9 ± 1.0 × 102 | 27.4 ± 0.3 | 82.1 ± 0.3 | |
8 | 48.3 ± 4.0 | 14.9 ± 0.8 × 102 | 22.1 ± 0.2 | 87.1 ± 0.2 | |
SS alloy | 0 | 42.2 ± 3.1 | 14.0 ± 0.8 × 102 | 11.9 ± 0.2 | 87.0 ± 0.3 |
0.5 | 63.0 ± 4.2 | 15.6 ± 0.8 × 102 | 19.8 ± 0.2 | 88.1 ± 0.2 | |
2 | 76.2 ± 5.3 | 16.8 ± 0.9 × 102 | 20.8 ± 0.2 | 88.9 ± 0.4 | |
4 | 42.1 ± 3.1 | 22.0 ± 1.5 × 102 | 21.4 ± 0.2 | 88.9 ± 0.2 | |
6 | 86.3 ± 5.2 | 22.6 ± 1.5 × 102 | 22.8 ± 0.2 | 88.1 ± 0.3 | |
8 | 38.0 ± 4.0 | 16.6 ± 0.9 × 102 | 26.2 ± 0.3 | 86.2 ± 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Song, D.; Li, C.; Klu, E.E.; Qiao, Y.; Sun, J.; Jiang, J.; Ma, A. Developing Improved Mechanical Property and Corrosion Resistance of Mg-9Li Alloy via Solid-Solution Treatment. Metals 2019, 9, 920. https://doi.org/10.3390/met9090920
Wang G, Song D, Li C, Klu EE, Qiao Y, Sun J, Jiang J, Ma A. Developing Improved Mechanical Property and Corrosion Resistance of Mg-9Li Alloy via Solid-Solution Treatment. Metals. 2019; 9(9):920. https://doi.org/10.3390/met9090920
Chicago/Turabian StyleWang, Guowei, Dan Song, Cheng Li, Edwin Eyram Klu, Yanxin Qiao, Jiapeng Sun, Jinghua Jiang, and Aibin Ma. 2019. "Developing Improved Mechanical Property and Corrosion Resistance of Mg-9Li Alloy via Solid-Solution Treatment" Metals 9, no. 9: 920. https://doi.org/10.3390/met9090920
APA StyleWang, G., Song, D., Li, C., Klu, E. E., Qiao, Y., Sun, J., Jiang, J., & Ma, A. (2019). Developing Improved Mechanical Property and Corrosion Resistance of Mg-9Li Alloy via Solid-Solution Treatment. Metals, 9(9), 920. https://doi.org/10.3390/met9090920