Factors Affecting the Formation and Evolution of Permafrost and Stability Zone of Gas Hydrates: Case Study of the Laptev Sea
Abstract
:1. Introduction
1.1. Geological Settings
1.2. Permafrost Occurrence and Distribution
1.3. ESAS Paleoenvironment
2. Materials and Methods
2.1. Considered Paleoenvironments
2.2. Heat Flow
2.3. Mapping
2.4. Model Setup
- = −13.5 (Scenario 1)
- = −22.5 (Scenario 2)
- = −1.5
2.5. Modeling Assumptions
3. Results and Discussions
3.1. RSP and GHSZ Distribution Forecast
3.1.1. Forecast for Present-Day Lateral Extension
3.1.2. Forecast of Present-Day Geometry
3.2. Evolution of RSP and GHSZ
3.2.1. Geometry Changes over Time
3.2.2. Influence of Paleoscenario and Heat Flow
3.2.3. RSP as a Factor Controlling GHSZ
3.2.4. Forecast for the Future
3.2.5. Influence of Hydrate Content
4. Conclusions
- Longer freezing and a lower subaerial temperature doubles the thickness of the RSP and makes the pressure-and-temperature conditions favorable for the existence of methane hydrate;
- All other things being equal, an increase in HF by 66% reduces the thickness of the RSP by 1.5 times (average value for both scenarios);
- With prolonged freezing and a higher temperature jump, the limiting water depths at which RSP is still present increase;
- Present-day relic submarine permafrost in the Laptev Sea is forecasted to propagate to the 50–100 m isobaths with a maximal thickness in the range of 170–473 m;
- The conditions for the stability of cryogenic hydrates in the Laptev Sea are either currently completely absent (Scenario 1) or exist up to a sea depth of 70 m—the maximum thickness of the GHSZ is forecasted to be as thick as 453 m;
- The thickness of the GHSZ is less (by 1.2 times at the end of the regression) in scenarios where there is initially a high hydrate content;
- The minimum and maximum predicted preservation times for the RSP are 9 and 36.6 kyr, whereas the presence of conditions for the stability of methane hydrates in the Laptev Sea at the maximum permafrost thickness is possible for another 25.9 kyr;
- During the warming period, the presence of gas hydrates slows down the thawing of the RSP, and the stability persists up to 7.7 kyr longer—i.e., an increase from 25.9 to 33.6 kyr.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soloviev, V.; Ginsburg, G.; Telepnev, E.; Mikhaluk, Y. Cryogeothermia and Gas Hydrates in the Arctic Ocean; Sevmorgeologia: Leningrad, Russia, 1987; 150p. (In Russian) [Google Scholar]
- Romanovskii, N.N.; Hubberten, H.W. Results of Permafrost Modelling of the Lowlands and Shelf of the Laptev Sea Region. Permafr. Periglac. Process. 2001, 12, 191–202. [Google Scholar] [CrossRef]
- Osterkamp, T.E. Subsea Permafrost. In Encyclopedia of Ocean Sciences; Steele, J.H., Thorpe, S.A., Turekian, K.K., Eds.; Academic Press: Cambridge, MA, USA, 2001; pp. 2902–2912. [Google Scholar]
- Rachold, V.; Bolshiyanov, D.Y.; Grigoriev, M.N.; Hubberten, H.-W.; Junker, R.; Kunitsky, V.V.; Merker, F.; Overduin, P.P.; Schneider, W. Near-shore Arctic Subsea Permafrost in Transition. EOS Trans. Am. Geophys. Union 2007, 88, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Shpolanskaya, N.A.; Streletskaya, I.D.; Surkov, A.V. Cryolithogenesis in Arctic shelf (recent and relict). Cryosphere Earth 2006, 10, 49–60. (In Russian) [Google Scholar]
- Shpolyanskaya, N.A. Pleistocene paleogeography of the Russian Arctic based on the analysis of underground ice. Cryosphere Earth 2013, XVII, 12–25. (In Russian) [Google Scholar]
- Dallimore, S.R. Geological, Geotechnical and Geophysical Studies Along an Onshore-Offshore Transect of the Beaufort Shelf; Geological Survey of Canada: Ottawa, ON, Canada, 1991; p. 325. [Google Scholar]
- Collett, T.S.; Dallimore, S.R. Permafrost-Associated Gas Hydrate. In Natural Gas Hydrate. Coastal Systems and Continental Margins; Max, M.D., Ed.; Springer: Dordrecht, The Netherlands, 2000; Volume 5. [Google Scholar] [CrossRef]
- Majorowicz, J.A.; Osadetz, K.G. Gas Hydrate Distribution and Volume in Canada. AAPG Bull. 2001, 85, 1211–1230. [Google Scholar]
- Jin, Y.K.; Onboard Ship Scientific Party. ARA07C Cruise Report: 2016 Korea-Russia-Germany East Siberian Sea Research Program; Korea Polar Research Institute: Incheon, Korea, 2017; p. 180. [Google Scholar]
- Soloviev, V. Predicted distribution of relic submarine frozen zone (East Arctic seas example). In Cryolithozone of the Arctic Shelf; Permafrost Inst., Siberian Branch of the Russian Academy of Sciences: Yakutsk, Russia, 1981; pp. 28–38. (In Russian) [Google Scholar]
- Yershov, E.D.; Kondratyeva, K.A.; Zamolotchikova, S.A.; Trush, N.I.; Dunaeva, Y.N. Geocryological Map of the USSR. Faculty of Geology; Moscow State University: Moscow, Russia, 1985. Scale 1:2,500,000. (In Russian) [Google Scholar]
- Rachold, V.; Bolshiyanov, D.; Grigoriev, M. What controls the distribution and State of Subsea Permafrost? EOS 2007, 88, 149–151. [Google Scholar] [CrossRef] [Green Version]
- Romanovskii, N.N.; Hubberten, H.W.; Gavrilov, A.V.; Eliseeva, A.A.; Tipenko, G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Mar. Lett. 2005, 25, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Tipenko, G.S.; Romanovskii, N.N.; Kholodov, A.L. Simulation of offshore permafrost and gashydrate stability zone: Mathematical solution, numerical realization and preliminary results. Polarforschung 2001, 69, 229–233. [Google Scholar]
- Overduin, P.P.; Schneider von Deimling, T.; Miesner, F.; Grigoriev, M.N.; Ruppel, C.D.; Vasiliev, A.; Lantuit, H.; Juhls, B.; Westermann, S. Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (SuPerMAP). J. Geophys. Res. Ocean. 2019, 124. [Google Scholar] [CrossRef] [Green Version]
- Shakhova, N.; Semiletov, I.; Gustafsson, O.; Sergienko, V.; Lobkovsky, L.; Dudarev, O.; Tumskoy, V.; Grigoriev, M.; Mazurov, A.; Salyuk, A.; et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Nicolsky, D.J.; Romanovsky, V.E. Modeling long-term permafrost degradation. J. Geophys. Res. Earth Surf. 2018, 123, 1756–1771. [Google Scholar] [CrossRef]
- Malakhova, V.V.; Eliseev, A.V. Influence of rift zones and thermokarst lakes on the formation of subaqueous permafrost and the stability zone of methane hydrates of the Laptev Sea shelf in the Pleistocene. Led Sneg Ice Snow 2018, 58, 231–242. (In Russian) [Google Scholar] [CrossRef]
- Overduin, P.P.; Liebner, S.; Knoblauch, C.; Günther, F.; Wetterich, S.; Schirrmeister, L.; Hubberten, H.W.; Grigoriev, M.N. Methane oxidation following submarine permafrost degradation: Measurements from a central Laptev Sea shelf borehole. J. Geophys. Res. Biogeosci. 2015, 120, 65–978. [Google Scholar] [CrossRef] [Green Version]
- Dobretsov, N.L.; Vernikovsky, V.A.; Karyakin, Y.V.; Korago, E.A.; Simonov, V.A. Mesozoic-Cenozoic volcanism and geodynamic events in the Central and Eastern Arctic. Geol. Geophys. 2013, 54, 1126–1144. (In Russian) [Google Scholar] [CrossRef]
- Rekant, P.V.; Gusev, E.A. Seismic geological structure model for the sedimentary cover of the Laptev sea part of the Lomonosov Ridge and adjacent parts of the Amundsen plain and Podvodnikov Basin. Geol. Geophys. 2012, 53, 1150–1162. (In Russian) [Google Scholar] [CrossRef]
- Bogdanov, N.A.; Khain, V.E.-M. (Eds.) Tectonic Map of the Kara and Laptev Seas and Northern Siberia; Institute of the Lithosphere RAS: Moscow, Russia, 1998. [Google Scholar]
- Drachev, S.S.; Savostin, L.A.; Groshev, V.G.; Bruni, I.E. Structure and geology of the continental shelf of the Laptev Sea, Eastern Russian Arctic. Tectonophysics 1998, 298, 357–393. [Google Scholar] [CrossRef]
- Khutorskoy, M.D.; Podgornykh, L.V.; Suprunenko, O.I.; Kim, B.I. Thermotomographic model and oil and gas content forecast of the Laptev Sea shelf sedimentary cover. Rep. Acad. Sci. 2011, 440, 663–668. (In Russian) [Google Scholar]
- Kirillova-Pokrovskaya, T.A. Development of the actual geological model of the Laptev Sea and adjacent deepwater zones for the updated estimate of its hydrocarbon potential. Razved. Okhrana Nedr 2017, 10, 30–38. (In Russian) [Google Scholar]
- Drachev, S.S.; Malyshev, N.A.; Nikishin, A.M. Tectonic history and petroleum geology of the Russian Arctic shelves. In Proceedings of the Society of Petroleum Engineers—Arctic Technology Conference, Houston, TX, USA, 7–9 February 2011; Volume 1, pp. 234–249. [Google Scholar]
- Zakharov, V.A.; Kim, B.I.; Rogov, M.A. On the possible distribution of the Upper Jurassic and Lower Cretaceous deposits on the shelf of the Laptev Sea and the prospects for their oil and gas potential. Stratigr. Geol. Correl. 2013, 21, 36–55. (In Russian) [Google Scholar] [CrossRef]
- Polyakova, I.D.; Borukaev, G.C.; Sidorenko St, A. Potential oil and gas content of the East Siberian Sea. Geol. Oil Gas 2017, 1, 3–10. (In Russian) [Google Scholar]
- Poselov, V.A.; Zholondz, S.M.; Trukhalev, A.I.; Kosko, M.K.; Poselova, L.G.; Butsenko, V.V.; Pavlenkin, A.D.; Verba, V.V.; Kim, B.I. Map of the thickness of the sedimentary cover of the Arctic Ocean. In Geological and Geophysical Characteristics of the Lithosphere of the Arctic Region; VNIIOkeangeologiya Publishing House: Sankt-Petersburg, Russia, 2012; Volume 233, pp. 8–14. (In Russian) [Google Scholar]
- Drachev, S.S.; Johnson, G.L.; Laxon, S.; McAdoo, D.; Kassens, H. Main structural elements of the Eastern Russian Arctic Continental Margin derived from satellite gravity and multichannel seismic reflection data. In Land–Ocean Systems in the Siberian Arctic: Dynamics and History; Kassens, H., Bauch, H.A., Dmitrenko, I.A., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 667–682. [Google Scholar]
- Areke, D.; Hinz, K.; Oncken, O. The Laptev Sea Rift. Mar. Pet. Geol. 2001, 18, 1083–1127. [Google Scholar]
- Rekant, P.; Bauch, A.; Schwenk, T.; Portnov, A.; Gusev, E.; Spiess, V.; Cherkashov, G.; Kassens, H. Evolution of subsea permafrost landscapes in Arctic Siberia since the Late Pleistocene: A synoptic insight from acoustic data of the Laptev Sea. Arktos 2015, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bolshiyanov, D.Y.; Grigoriev, M.N.; Schneider, V.; Makarov, A.S.; Gusev, E.A. Fluctuations sea level and the formation of an ice complex of rocks on the sea coast Laptevs in the Late Pleistocene. In The System of the Laptev Sea and Adjacent the Seas of the Arctic: Current State and History of Development; Publishing House Mosk: Moscow, Russia, 2009; pp. 349–356. [Google Scholar]
- Are, F.E. On the relative level of the Laptev and East Siberian seas in the post-glacial period. In Fluctuations in the Level of Seas and Oceans for 15,000; Nauka: Moscow, Russia, 1982; pp. 168–174. [Google Scholar]
- Overduin, P.P.; Grigoriev, M.N.; Junker, R.; Rachold, V.; Kunitsky, V.V.; Bolshiyanov, D.Y.; Schirrmeister, L. The expedition COASTI: COAST drilling campaign 2005: Subsea permafrost studies in the near-shore zone of the Laptev Sea. Technol. Rep. 2007, 550, 40. [Google Scholar]
- Semiletov, I.; Shakhova, N.; Romanovskii, N.; Nicolsky, D.; Dudarev, O.; Tumskoy, V.; Kosmach, D.; Samarkin, V.; Chuvilin, E.; Charkin, A. First drilling subsea permafrost in the southeastern Laptev Sea, the East Siberian Arctic Shelf: Results and challenges. In Geophysical Research Abstracts; European Geosciences Union: Vienna, Austria, 2012; Volume 14, EGU2012-3913. [Google Scholar]
- Kassens, H.; Bauch, H.A.; Dmitrenko, I.; Drachev, S.; Grikurov, G.; Thiede, J.; Tuschling, K. Transdrift VIII: Drilling the Laptev Sea 2000. Nansen Icebreaker 2001, 12, 8–9. [Google Scholar]
- Danilov, I.D.; Komarov, I.A.; Vlasenko, A.Y. Pleistocene-Holocene Permafrost of the East Siberian Eurasian Arctic Shelf. In Proceedings of the 7th International Conference on Permafrost, Yellowknife, NT, Canada, 23–27 June 1998; pp. 207–212. [Google Scholar]
- Zhigarev, L.A.; Suhodol’skaya, L.A.; Chernyad’ev, V.P. Cryolithozone of the Arctic seas in the Late Pleistocene and Holocene. MSU Lett. 1982, 93, 109. (In Russian) [Google Scholar]
- Romanovsky, N.N.; Eliseeva, A.A.; Gavrilov, A.V.; Tipenko, G.S.; Hubberten, H.-V. Evolution and current state of frozen strata and zones of gas hydrates stability in the rifts of the Eastern Arctic shelf. In The System of the Laptev and Adjacent Seas of the Arctic: Current State and History of Development; Moscow University Publishing House: Moscow, Russia, 2009; pp. 292–312. (In Russian) [Google Scholar]
- Pavlov, V.A.; Verbitskaya, O.A.; Mironov, E.U.; Tarasov, P.A.; Kornishin, K.A. (Eds.) Atlas of Hydrometeorological and Ice Conditions in the Russian Arctic Seas: The Generalization of Library Materials and the Results of Field Research by Arctic Research and Design Center for Offshore Development in 2012–2014; Rosneft, Oil Industry: Moscow, Russia, 2015; 128p. (In Russian) [Google Scholar]
- Fleming, K.; Johnston, P.; Zwartz, D.; Yokohama, Y.; Lambeck, K.; Chappell, J. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth Planet Sci. Lett. 1998, 163, 327–342. [Google Scholar] [CrossRef]
- Gavrilov, A.V.; Tumskoy, V.E.; Romanovskii, N.N. Reconstruction of the mean annual ground temperature dynamicon the Yakutian coastal lowlands and adjoining shelf during the last 420 KYR. Earth Cryosphere 2000, 4, 3–14. (In Russian) [Google Scholar]
- Fairbanks, R.J. A 17 000-years glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 1989, 342, 637–642. [Google Scholar] [CrossRef]
- Klemann, V.; Heim, B.; Bauch, H.A.; Wetterich, S.; Opel, T. Sea-level evolution of the Laptev Sea and the East Siberian Sea since the last glacial maximum. Arktos 2015, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Gavrilov, A.V. Permafrost Zone of the Arctic Shelf of Eastern Siberia (Current State and History of Development in the Middle Pleistocene-Holocene). Ph.D. Thesis, Moscow State University, Moscow, Russia, 2008; 49p. (In Russian). [Google Scholar]
- Schirrmeister, L.; Dietze, E.; Matthes, H.; Grosse, G.; Strauss, J.; Laboor, S.; Ulrich, M.; Kienast, F.; Wetterich, S. The genesis of Yedoma Ice Complex permafrost—Grain-size endmember modeling analysis from Siberia and Alaska. E G Quat. Sci. J. 2020, 69, 33–53. [Google Scholar] [CrossRef]
- Tumskoy, V.E. Features of cryolithogenesis of sediments of northern Yakutia in the Middle Neopleistocene—Holocene. Cryosphere Earth 2012, XVI, 12–21. [Google Scholar]
- Bauch, H.A.; Mueller-Lupp, T.; Taldenkova, E.; Spielhagen, R.F.; Kassens, H.; Grootes, P.M.; Thiede, J.; Heinemeier, J.; Petryashov, V.V. Chronology of the Holocene transgression at the North Siberian margin. Glob. Planet Chang. 2001, 31, 125–139. [Google Scholar] [CrossRef]
- Nicolsky, D.J.; Romanovsky, V.E.; Romanovskii, N.N.; Kholodov, A.L.; Shakhova, N.E.; Semiletov, I.P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region. J. Geophys. Res. 2012, 117, F03028. [Google Scholar] [CrossRef]
- Velichko, A.A. (Ed.) Evolution of Landscapes and Climates of the Nothern Eurasia: Late Pleistocene-Holocene; Elements of Prognosis; Nauka: Moscow, Russia, 1993; p. 120. (In Russian) [Google Scholar]
- Evseeva, T.S.; Zhilina, T.N. Palegeography of the Late Late Pleistocene and Holocene (Correlation of Events)—A Tutorial; NTL Publishing House: Tomsk, Russia, 2010; p. 180. [Google Scholar]
- Antipina, Z.; Are, F.; Molochushkin, E. Calculation of permafrost degradation under the sea bottom. In Geothermophysical Investigations in Siberia; Nauka: Novosibirsk, Russia, 1978; pp. 66–73. [Google Scholar]
- Fartyshev, A.; Antipina, Z. Ocean eustasy, permafrost dynamics during 25 thousand years and permafrost forecast of Laptev Sea shelf. In Thermicity of Soils and Rocks in Cold Regions; Permafrost Inst.: Yakutsk, Russia, 1982; pp. 89–100. [Google Scholar]
- Sekretov, S.B. Eurasian Basin—Laptev Sea Geodynamic System: Tectonic and Structural Evolution. Polarforschung 1999, 69, 51–54. [Google Scholar]
- Global Heat Flow Data Base. Available online: http://heatflow.org/ (accessed on 8 September 2020).
- Bochkarev, A.V.; Matveeva, T.V.; Gusev, E.A.; Gladysh, V.A. Geothermal measurements in the Laptev Sea during the cruise of the R/V Ivan Petrov in 2018. In Proceedings of the XXIII International Scientific Conference (School) on Marine Geology, Moscow, Russia, 18–22 November 2019; pp. 37–39. (In Russian). [Google Scholar]
- Soloviev, V.A.; Ginsburg, G.D.; Mikhalyuk, Y.N.; Telepnev, E.V.; Borisov, V.V.; Ivanov, V.L.; Stanischeva, O.N.; Yashin, D.S. Problems of Gas Hydrates in the Bowels of the World Ocean and the Gas Hydrate Content of the Arctic Waters; report on v. 791; Appendix: Scheme of geothermal exploration of the Arctic Ocean; VNIIOkeangeologiya Funds: St. Petersburg, Russia, 1984; p. 323. (In Russian) [Google Scholar]
- Smirnov, Y.B. Terrestrial heat flow and problems of geosyncline energy. In Energy of Geological and Geophysical Processes; Nauka: Moscow, Russia, 1972; pp. 52–74. (In Russian) [Google Scholar]
- Romanovsky, N.N.; Hubberten, H.V. Cryolithozone and gas hydrates stability zone on the Laptev Sea shelf (the main results of Russian-German ten years research). Earth Cryosphere 2006, X, 61–68. (In Russian) [Google Scholar]
- Sloan, E.D. Gas hydrates: Review of physical/chemical properties. Energy Fuels 1998, 12, 191–196. [Google Scholar] [CrossRef]
- Athy, L.F. Density, porosity and compaction of sedimentary rocks. AAPG Bull. 1930, 14, 1–24. [Google Scholar]
- Golmstock, A.Y. On the question of the role of fault formation in the formation of bottom deposits of gas ydrates. In Problems of Geophysics; Scientific Notes of Sankt-Petersburg State University; Sankt- Petersburg State University: Sankt-Petersburg, Russia, 2008; pp. 80–111. (In Russian) [Google Scholar]
- Waite, W.F.; Santamarina, J.C.; Corts, D.D.; Dugan, B.; Espinoza, D.N.; Germaine, J.; Jang, J.; Jung, J.W.; Kneafsey, T.J.; Shin, H.; et al. Physical properties of hydrate-bearing sediments. Rev. Geophys. 2009, 47. [Google Scholar] [CrossRef]
- Zdobin, D.Y.; Verzhbitsky, V.E.; Khudoley, A.K.; Tuchkova, M.I.; Rogov, M.A. Composition and properties of bottom sediments of the Laptev Sea bays. Eng. Geol. 2015, 5, 64–72. (In Russian) [Google Scholar]
- Kassens, H. Laptev Sea System: Expedition in 1995. Ber. Zur Polarforsch. 1997, 248, 210. [Google Scholar]
- Bondarenko, S.A. Bottom Sediments of the Laptev Sea Shelf. In Geological and Geophysical Characteristics of the Lithosphere of the Arctic Region; VNIIOkeangeologiya Publishing House: Sankt-Petersburg, Russia, 2000; pp. 93–103. (In Russian) [Google Scholar]
- Romanovsky, N.N.; Tumskoy, V.E. Retrospective approach to assessing the modern distribution and structure of the shelf permafrost zone of the Eastern Arctic. Cryosphere Earth 2011, XV, 3–14. (In Russian) [Google Scholar]
- Fartyshev, A. Features of Offshore Permafrost on the Laptev Sea Shelf; SB Nauka: Novosibirsk, Russia, 1993. [Google Scholar]
- Delisle, G. Temporal variability of subsea permafrost and gas hydrate occurrences as a function of climate change in the Laptev Sea, Siberia. Polarforschung 2000, 68, 221–225. [Google Scholar]
- Eliseeva, A.A. The Current State and Evolution of the Permafrost and Gas Hydrates Stability Zones on the Eastern Siberia Arctic Shelf in the Late Cenozoic. Ph.D. Dissertation, Moscow State University, Moscow, Russia, 2007; 26p. (In Russian). [Google Scholar]
- Shakhova, N.; Semiletov, I.; Chuvilin, E. Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf. Geosciences 2019, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Bogoyavlensky, V.; Kishankov, A.; Yanchevskaya, A.; Bogoyavlensky, I. Forecast of Gas Hydrates Distribution Zones in the Arctic Ocean and Adjacent Offshore Areas. Geosciences 2018, 8, 453. [Google Scholar] [CrossRef] [Green Version]
Water Depth, m | Freezing (Scenario 1) | Freezing (Scenario 2) | ||||
---|---|---|---|---|---|---|
Start | Completion | Duration | Start | Completion | Duration | |
10 | 27.7 | 6.2 | 21.5 | 111.0 | 5.9 | 105.1 |
20 | 25.7 | 7.7 | 18.0 | 109.8 | 7.5 | 102.3 |
30 | 23.9 | 8.7 | 15.2 | 91.0 | 8.5 | 77.5 |
40 | 22.2 | 9.5 | 12.7 | 86.0 | 9.0 | 60.0 |
50 | 21.4 | 11.0 | 10.4 | 67.5 | 9.5 | 58.0 |
60 | 20.7 | 12.0 | 8.7 | 64.8 | 10.0 | 54.8 |
70 | 20.5 | 13.1 | 7.4 | 40.5 | 11.1 | 29.4 |
80 | 19.9 | 14.1 | 5.8 | 25.0 | 11.8 | 13.2 |
90 | 19.6 | 15.2 | 4.4 | 23.5 | 12.0 | 11.5 |
Symbol | Parameter | Unit | Value | References |
---|---|---|---|---|
λsk | Sediment thermal conductivity | W/(m∙K) | 2.5 | [64] |
λw | Water thermal conductivity | W/(m∙K) | 0.58 | [62] |
λi | Ice thermal conductivity | W/(m∙K) | 2.23 | [62] |
λgh | Methane hydrate thermal conductivity | W/(m∙K) | 0.49 | [62] |
Csk | Sediment heat capacity | J/(kg∙K) | 1000 | [64] |
Cw | Water heat capacity | J/(kg∙K) | 4187 | [64] |
Ci | Ice heat capacity | J/(kg∙K) | 2050 | [64] |
Cgh | Methane hydrate heat capacity | J/(kg∙K) | 2080 | [64] |
Lwi | Latent heat of ice formation | kJ/kg | 334 | [65] |
Lgh | Latent heat of methane hydrate crystallization | kJ/kg | 430 | [65] |
Psk | Sediment density | kg/m3 | 2700 | [66,67] |
Pw | Sediment pore water density | kg/m3 | 1035 | [64] |
Pi | Ice density | kg/m3 | 917 | [62] |
Pgh | Methane hydrate density | kg/m3 | 913 | [62] |
φ | Porosity at the seafloor | – | 0.6 | [67,68] |
K | Sediment compaction factor | – | 0.00045 | [64] |
Sea Depth, m | HF = 60 mW/m2 | HF = 100 mW/m2 | ||||||
---|---|---|---|---|---|---|---|---|
Scenario 1 | Scenario 2 | Scenario 1 | Scenario 2 | |||||
RSP 1 | Duration 2 | RSP | Duration | RSP | Duration | RSP | Duration | |
10 | 250 | 15.0 | 535 | 42.0 | 182 | 6.5 | 288 | 15.0 |
20 | 240 | 14.0 | 531 | 41.5 | 178 | 7.3 | 287 | 15.0 |
30 | 229 | 13.0 | 505 | 38.3 | 174 | 7.0 | 282 | 14.3 |
40 | 217 | 12.0 | 477 | 35.1 | 169 | 6.8 | 275 | 13.6 |
50 | 204 | 11.0 | 473 | 34.6 | 163 | 6.3 | 274 | 13.6 |
60 | 192 | 10.0 | 465 | 34.0 | 156 | 5.8 | 273 | 13.5 |
70 | 182 | 9.3 | 394 | 26.8 | 150 | 5.5 | 254 | 11.8 |
80 | 165 | 8.3 | 305 | 18.8 | 139 | 4.8 | 224 | 9.8 |
90 | 151 | 7.0 | 281 | 17.4 | 129 | 4.3 | 214 | 9.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveeva, T.V.; Kaminsky, V.D.; Semenova, A.A.; Shchur, N.A. Factors Affecting the Formation and Evolution of Permafrost and Stability Zone of Gas Hydrates: Case Study of the Laptev Sea. Geosciences 2020, 10, 504. https://doi.org/10.3390/geosciences10120504
Matveeva TV, Kaminsky VD, Semenova AA, Shchur NA. Factors Affecting the Formation and Evolution of Permafrost and Stability Zone of Gas Hydrates: Case Study of the Laptev Sea. Geosciences. 2020; 10(12):504. https://doi.org/10.3390/geosciences10120504
Chicago/Turabian StyleMatveeva, Tatiana V., Valery D. Kaminsky, Anastasiia A. Semenova, and Nikolai A. Shchur. 2020. "Factors Affecting the Formation and Evolution of Permafrost and Stability Zone of Gas Hydrates: Case Study of the Laptev Sea" Geosciences 10, no. 12: 504. https://doi.org/10.3390/geosciences10120504
APA StyleMatveeva, T. V., Kaminsky, V. D., Semenova, A. A., & Shchur, N. A. (2020). Factors Affecting the Formation and Evolution of Permafrost and Stability Zone of Gas Hydrates: Case Study of the Laptev Sea. Geosciences, 10(12), 504. https://doi.org/10.3390/geosciences10120504