Uncertainty Analysis in Prediction of Settlements for Spatial Prefabricated Vertical Drains Improved Soft Soil Sites
Abstract
:1. Introduction
2. Uncertainties in Settlement Predictions
2.1. Probabilistic Techniques
2.2. Measure of Dispersion of Data
2.3. Bias in Settlement Predictions
3. Statistical Soil Properties
3.1. Description of the Soft Soil Profiles, the Embankments and Field Measurements
3.2. Soil Properties of Karakore and Ballina
3.3. Uncertainty in Model Parameters
4. Settlement Predictions
4.1. Random Input Variables
4.2. Calibration of MC Simulations
4.3. Modeling Techniques and Input Parameters
4.4. Loading Stages and Settlement Readings
5. Result Analyses and Discussions
5.1. Prediction Bias for Class A and Class C Settlements
5.1.1. Class A Predictions
5.1.2. Class C Prediction
5.2. Distribution of Settlement Predictions Bias
5.3. Probable Limits of Predicted Settlements
5.4. Evaluation of Settlement Uncertainties
5.5. Standard Deviation and CoV of the Predicted Settlements
6. Final Remarks and Conclusions
6.1. Final Remarks
6.2. Conclusions
- The average prediction bias from Class C prediction for Ballina clay and Karakore was found to be 1.0 and 0.9 respectively. This showed that the prediction and model uncertainties for estuarine Ballina clay are lower than that of the Karakore alluvial soil.
- For both sites, the prediction bias was not consistent throughout the observation periods in both Class A and Class C predictions. This showed that the parameters which influenced the settlement output depend on the time of observation. This agreed with the work published by Liu et al. (2018) on Ballina clay [42].
- Cc was found to be the most uncertain random variable in predicting the consolidation settlement of Karakore alluvial clay deposit, while kv was for Ballina estuarine clay. Cc and kv were also highly influenced by the distribution of predicted settlements than other parameters for both Karakore and Ballina sites, respectively.
- Generally, for Karakore soft clay, the uncertainty could stem from the variability of the soil profile, presence of interbedded granular layers, and high embankment fills and limited samples for the laboratory tests; whereas for Ballina clay, the contributory factors may include the presence of transitional layers at the bottom of estuarine clay, sensitivity of the soft soil to sample disturbances.
- Uncertainty based analyses and comparisons have brought advantages over deterministic approaches by taking into account the uncertainties related to soil properties (Karakore soft alluvial vs. Ballina estuarine clay), model parameters, and quality of samples in representing the field conditions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hansbo, S. Consolidation of Clay by Band Shaped Prefabricated Drains Ground Eng’g. Gr. Eng. 1979, 12, 16–25. [Google Scholar]
- Barron, A.R. Consolidation of Fine-Grained Soil by Drain Wells. In Transactions of the American Society of Civil Engineers; American Society of Civil Engineers: New York, NY, USA, 1948; Volume 113, pp. 324–360. [Google Scholar]
- Huat, B.B.K.; Hoe, N.C.; Munzir, H.A. Observational Methods for Predicting Embankment Settlement. Pertanika J.Sci. Technol. 2004, 12, 115–128. [Google Scholar]
- Balasubramaniam, A.S.; Cai, H.; Zhu, D.; Surarak, C.; Oh, E.Y.N. Settlements of Embankments in Soft Soils. Geotech. Eng. 2010, 41, 61. [Google Scholar]
- Hird, C.C.; Pyrah, C.; Russell, D. Finite Element Modelling of Vertical Drains beneath Embankments on Soft Ground. Geotechnique 1992, 42, 499–511. [Google Scholar] [CrossRef]
- Bergado, D.T.; Alfaro, M.C. Improvement of Soft Bangkok Clay Using Vertical Drains. Geotext. Geomembr. 1993, 12, 615–663. [Google Scholar] [CrossRef]
- Rujikiatkamjorn, C.; Indraratna, B.; Chu, J. 2D and 3D Numerical Modeling of Combined Surcharge and Vacuum Preloading with Vertical Drains. Int. J. Geomech. 2008, 8, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Indraratna, B.; Baral, P.; Rujikiatkamjorn, C.; Perera, D. Class A and C Predictions for Ballina Trial Embankment with Vertical Drains Using Standard Test Data from Industry and Large Diameter Test Specimens. Comput. Geotech. 2018, 93, 232–246. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.; Shen, S.; Bergado, D.T. Modelling Prefabricated Vertical Drain Improved Ground in Plane Strain Analysis. Proc. ICE Eng. Improv. 2013, 166, 65–78. [Google Scholar] [CrossRef]
- Müthing, N.; Zhao, C.; Hölter, R.; Schanz, T. Settlement Prediction for an Embankment on Soft Clay. Comput. Geotech. 2018, 93, 87–103. [Google Scholar] [CrossRef]
- Zhou, W.; Hong, H.P.; Shang, J.Q. Probabilistic Design Method of Prefabricated Vertical Drains for Soil Improvement. J. Geotech. Geoenviron. Eng. 1999, 125, 659–664. [Google Scholar] [CrossRef]
- Krizek, R.J.; Corotis, R.B.; El-Moursi, H.H. Probabilistic Analysis of Predicted and Measured Settlements: Reply. Can. Geotech. J. 2011, 14, 276–277. [Google Scholar] [CrossRef]
- Chai, B.J.; Miura, N. Investigation of Factors Affecting Vertical Drain Behaviour. J. Geotech. Geoenviron. Eng. 1999, 125, 216–226. [Google Scholar] [CrossRef]
- Arulrajah, A.; Nikraz, H.; Bo, M.W. Factors Affecting Field Instrumentation Assessment of Marine Clay Treated with Prefabricated Vertical Drains. Geotext. Geomembr. 2004, 22, 415–437. [Google Scholar] [CrossRef]
- Bullinger-Weber, G.; Gobat, J.M. Identification of Facies Models in Alluvial Soil Formation: The Case of a Swiss Alpine Floodplain. Geomorphology 2006, 74, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Kirsch, K.; Bell, A. Ground Improvement; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Chung, S.G.; Giao, P.H.; Nagaraj, T.S.; Kwag, J.M. Characterization of Estuarine Marine Clays for Coastal Reclamation in Pusan, Korea. Mar. Georesour. Geotechnol. 2002, 20, 237–254. [Google Scholar] [CrossRef]
- Han, J. Principles and Practices of Ground Improvement; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Chai, J.; Carter, J.P. Deformation Analysis in Soft Ground; Springer: Berlin, Germany, 2011. [Google Scholar]
- Indraratna, B.; Chu, J.; Rujikiatkamjorn, C. Ground Improvement Case Histories: Compaction, Grouting, and Geosynthetics; Elsevier Ltd.: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Kelly, R.B.; Sloan, S.W.; Pineda, J.A.; Kouretzis, G.; Huang, J. Outcomes of the Newcastle Symposium for the Prediction of Embankment Behaviour on Soft Soil. Comput. Geotech. 2018, 93, 9–41. [Google Scholar] [CrossRef]
- Chai, J.-C.; Shen, S.-L.; Miura, N.; Bergado, D.T. Simple Method of Modelling PVD-Improved Subsoil. J. Geotech. Geoenviron. Eng. ASCE 2001, 127, 965–972. [Google Scholar] [CrossRef]
- Indraratna, B.; Redana, I.W. Numerical Modeling of Vertical Drains with Smear and Well Resistance Installed in Soft Clay. Can. Geotech. J. 2000, 37, 132–145. [Google Scholar] [CrossRef]
- Voottipruex, P.; Bergado, D.T.; Lam, L.G.; Hino, T. Back-Analyses of Flow Parameters of PVD Improved Soft Bangkok Clay with and without Vacuum Preloading from Settlement Data and Numerical Simulations. Geotext. Geomembr. 2014, 42, 457–467. [Google Scholar] [CrossRef]
- Yildiz, A.; Karstunen, M. Three-Dimensional Analyses of PVD-Improved Soft Soils. In Geotechnics of Soft Soils: Focus on Ground Improvement; CRC Press: Boca Raton, FL, USA, 2009; pp. 197–203. [Google Scholar]
- Yildiz, A. Numerical Analyses of Embankments on PVD Improved Soft Clays. Adv. Eng. Softw. 2009, 40, 1047–1055. [Google Scholar] [CrossRef]
- Indraratna, B.; Redana, I.W. Plane Strain Modeling of Smear Effects Associated with Vertical Drains. J. Geotech. Geoenviron. Eng. ASCE 1997, 123, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Hird, C.C.; Pyrah, L.C.; Russell, D.; Cinicioglu, F. Lntroduct Ion Theory for Matching Behaviour in Axisymmetry and Plane Strain Results of Applying the Matching Procedure. Can. Geotech. J. 1995, 32, 795–807. [Google Scholar] [CrossRef]
- Chai, J.C.; Shen, J.S.L.; Liu, M.D.; Yuan, D.J. Predicting the Performance of Embankments on PVD-Improved Subsoils. Comput. Geotech. 2018, 93, 222–231. [Google Scholar] [CrossRef]
- Jostad, H.P.; Palmieri, F.; Andresen, L.; Boylan, N. Numerical Prediction and Back-Calculation of Time-Dependent Behaviour of Ballina Test Embankment. Comput. Geotech. 2018, 93, 123–132. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, J.; Li, D.Q.; Kelly, R.; Sloan, S.W. Embankment Prediction Using Testing Data and Monitored Behaviour: A Bayesian Updating Approach. Comput. Geotech. 2018, 93, 150–162. [Google Scholar] [CrossRef]
- Chan, K.F.; Poon, B.M.; Perera, D. Prediction of Embankment Performance Using Numerical Analyses—Practitioner’s Approach. Comput. Geotech. 2018, 93, 163–177. [Google Scholar] [CrossRef]
- Rezania, M.; Nguyen, H.; Zanganeh, H.; Taiebat, M. Numerical Analysis of Ballina Test Embankment on a Soft Structured Clay Foundation. Comput. Geotech. 2018, 93, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Lambe, T.W. Predictions in Soil Engineering. Geotechnique 1973, 23, 151–202. [Google Scholar] [CrossRef] [Green Version]
- Indraratna, B.; Rujikiatkamjorn, C.; Ewers, B.; Adams, M. Class A Prediction of the Behavior of Soft Estuarine Soil Foundation Stabilized by Short Vertical Drains beneath a Rail Track. J. Geotech. Geoenviron. Eng. 2010, 136, 686–696. [Google Scholar] [CrossRef]
- Hiep, H.; Chung, S.G. Back-Analysis of Geotechnical Parameters on PVD-Improved Ground in the Mekong Delta. Geotext. Geomembr. 2018, 46, 402–413. [Google Scholar] [CrossRef]
- Baecher, G.B.; Christian, J.T. Reliability and Statistics in Geotechnical Engineering; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Buttling, S.; Cao, R.; Lau, W.; Naicker, D. Class A and Class C Numerical Predictions of the Deformation of an Embankment on Soft Ground. Comput. Geotech. 2018, 93, 191–203. [Google Scholar] [CrossRef]
- Muhammed, J.J.; Jayawickrama, P.W.; Teferra, A.; Özer, M.A. Settlement of a Railway Embankment on PVD Improved Karakore Alluvium Soft Soil. JESTECH Elsevier 2019, in press. [Google Scholar]
- University of Western Australia. Datamap. Available online: www.geocalcs.com/datamap (accessed on 3 January 2020).
- Doherty, J.P.; Gourvenec, S.; Gaone, F.M.; Pineda, J.A.; Kelly, R.; O’Loughlin, C.D.; Cassidy, M.J.; Sloan, S.W. A Novel Web Based Application for Storing, Managing and Sharing Geotechnical Data, Illustrated Using the National Soft Soil Field Testing Facility in Ballina, Australia. Comput. Geotech. 2018, 93, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Choi, J.C.; Lacasse, S.; Nadim, F. Uncertainty Analyses of Time-Dependent Behaviour of Ballina Test Embankment. Comput. Geotech. 2018, 93, 133–149. [Google Scholar] [CrossRef]
- Paulo, J.; Ekwaro-Osire, S.; Cunha, A.; Dabetwar, S.; Nispel, A.; Alemayehu, F.M.; Endeshaw, H.B. Parametric Probabilistic Approach for Cumulative Fatigue Damage Using Double Linear Damage Rule Considering Limited Data. Int. J. Fatigue 2019, 127, 246–258. [Google Scholar]
- Cao, Z.; Wang, Y.; Li, D. Probabilistic Approaches for Geotechnical Site Characterization and Slope Stability Analysis; Springer: Berlin, Germany, 2017. [Google Scholar]
- Duncan, J.M. Factor of Safety and Reliability in Geotechnical Engineering. J. Geotech. Geoenviron. Eng. 2000, 126, 189–190. [Google Scholar] [CrossRef]
- Phoon, K.-K.; Ching, J. Risk and Reliability in Geotechnical Engineering; CRS Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Liu, B.; Jin, H.; Sun, L.; Sun, Z.; Niu, Q.; Zhang, C. Geochemical Characteristics of Holocene Aeolian Deposits and Their Environmental Significance in the Mu Us Desert, Northern China. Geol. J. 2016, 337, 325–337. [Google Scholar] [CrossRef]
- Wu, T.H.; Gale, S.M.; Zhou, S.Z.; Geiger, E.C. Reliability of Settlement Prediction-Case History. J. Geotech. Geoenviron. Eng. 2011, 137, 312–322. [Google Scholar] [CrossRef]
- Pineda, J.A.; Sloan, S.W.; Suwal, L.P.; Kelly, R.B.; Bates, L. Characterisation of Ballina Clay. Géotechnique 2016, 66, 556–577. [Google Scholar] [CrossRef]
- Lacasse, S.; Nadim, F.; Rahim, A.; Guttormsen, T.R. Statistical Description of Characteristic Soil Properties. In Proceedings of the Offshore Technology Conference—OTC 19117, Houston, TX, USA, 30 April–3 May 2007; pp. 1–8. [Google Scholar]
- Lim, G.T.; Pineda, J.A.; Boukpeti, N.; Carraro, J.A.H. Predicted and Measured Behaviour of an Embankment on PVD-Improved Ballina Clay. Comput. Geotech. Elsevier Ltd. 2018, 93, 204–221. [Google Scholar] [CrossRef]
- Kerns, G.J. Introduction to Probability and Statistics Using R. GNU Free Documentation License. ISBN: 978-0-557-24979-4. 2010. Available online: http://www.atmos.albany.edu/facstaff/timm/ATM315spring14/R/IPSUR.pdf (accessed on 3 January 2020).
- Gong, Y.; Chok, Y.H. Predicted and Measured Behaviour of a Test Embankment on Ballina Clay. Comput. Geotech. 2018, 93, 178–190. [Google Scholar] [CrossRef]
- PLAXIS bv. 2D Reference Manual 2018. Build 2018, 9462, 1–831. [Google Scholar]
Layer | Soil Depth (m) | Cc | Cr | eo | kv (m/day) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | CoV | Mean | CoV | Mean | CoV | Mean | CoV | ||
Karakore Soil | |||||||||
Silty Clay-1-1 | 0.50–3.25 | 0.32 | 0.26 | 0.04 | 0.12 | 1.10 | 0.16 | 1.59E−04 | 0.50 |
Silty Clay-1-2 | 3.50–6.25 | 0.90 | 0.34 | 0.09 | 0.54 | 1.60 | 0.49 | 3.09E−04 | 0.56 |
Gravelly Sand-GS-2 | 6.50–9.25 | - | - | - | - | - | - | 0.5 | - |
Silty Clay-3 | 9.5–12.50 | 0.17 | 0.32 | 0.03 | 0.39 | 1.10 | 0.04 | 2.99E−04 | 0.13 |
Stiff Silty Clay-4 | 12.75–18.25 | 0.19 | 0.58 | 0.03 | 0.69 | 0.97 | 0.15 | 2.22E−04 | 0.19 |
Ballina Clay | |||||||||
Alluvial Sandy Clayey Silt | 0.20–1.50 | 0.52 | 0.60 | 0.03 | 0.60 | 1.30 | 0.33 | 1.38E−03 | 1.237 |
Estuarine Silty Clay | 1.50–10.10 | 1.70 | 0.17 | 0.09 | 0.17 | 2.68 | 0.10 | 3.35E−04 | 0.571 |
Transition (Clayey Sand) | 10.1–13.8 | 0.10 | 0.65 | 0.01 | 0.82 | 0.80 | 0.32 | 3.15E−04 | 0.865 |
Sand | 14–18.20 | - | - | - | - | 1.10 | - | 0.50 | - |
Parameters | Thickness (m) | Material Model | Drainage Condition | γb (kN/m3) | E (kN/m2) | ν | c (kN/m2) | φ′ (°) |
---|---|---|---|---|---|---|---|---|
Karakore Soil | ||||||||
Surcharge fill | 8.0 | MC | drained | 20 | 45000 | 0.25 | 1 | 40 |
Working platform and drainage layers | 1.3 | MC | drained | 20 | 30000 | 0.25 | 1 | 40 |
Silty clay (SC1-1) | 3.0 | SCC | undrained | 17 | - | 0.35 | 20 | 0 |
Silty clay (SC1-2) | 3.0 | SCC | undrained | 17 | - | 0.35 | 4 | 26 |
Loose Sand (GS2) | 3.0 | MC | drained | 17 | 5000 | 0.30 | 1 | 33 |
Silty clay (SC3) | 3.0 | SCC | undrained | 17 | - | 0.35 | 50 | 0 |
Eocene silty clay (ESC4) | 13.5 | MCC | undrained | 17 | - | 0.35 | 70 | 0 |
Ballina Clay | ||||||||
Surcharge fill | 2.0 | MC | drained | 20 | 45000 | 0.25 | 1 | 35 |
Working platform and drainage layers | 1.0 | MC | drained | 20 | 30000 | 0.25 | 1 | 35 |
Alluvial crust | 0.9 | SSC | undrained | 17 | 20000 | 0.25 | 10 | 30 |
Estuarine clay | 9.0 | SCC | undrained | 14 | - | 0.35 | 2 | 32 |
Transition (clayey Sand) | 3.7 | MC | undrained | 19 | 10000 | 0.30 | 5 | 30 |
Sand | 4.5 | MC | drained | 19 | 20000 | 0.30 | 1 | 34 |
Pleistocene clay | 4.5 | MC | undrained | 18 | 15000 | 0.30 | 5 | 28 |
Parameters | λ* | κ* | µ* | eo | kv (m/day) | Kh (m/day) |
---|---|---|---|---|---|---|
Karakore Soil | ||||||
Silty clay (SC1-1) | 0.068 a/0.189 b | 0.0265 a/0.0378 b | 0.0021 a/0.0057 b | 1.03 a/1.3 b | 2.00E−04 | 2.25E-05 a /3.5E-05 b |
Silty clay (SC1-2) | 0.15 a/0.236 | 0.03 a/0.0496 b | 0.0045 a/0.0071 b | 1.6 a/2.5 b | 2E−04 a/1E−04 b | 2.25E-05 a/2.5E-05 b |
Loose Sand (GS2) | - | - | - | - | 0.5 | 0.5 |
Silty clay (SC3) | 0.037 a/0.13 b | 0.013 a/0.0124 b | 0.0011 a/0.0019 b | 1.1 | 3.00E−04 | 4.00E-05 |
Eocene silty clay (ESC4) | 0.083 | 0.026 | 0.0024 | 0.97 | 2.84E−04 | 4.14E-05 |
Ballina Clay | ||||||
Alluvial crust | 0.10 a/0.15 b | 0.01 a/0.02 b | 0.0039 a/0.006 b | 1.3 | 1.38E−03 | 2.07E-03 |
Easturine clay | 0.20 a/0.3 b | 0.02 a/0.04 b | 0.0081 a/0.015 b | 2.675 | 3.35E−04 a/5E−05 b | 5.01E-04 a/6E-05 b |
Transition (clayey Sand) | 0.024 | 0.001 | 0.0017 | 0.82 | 3.15E-04 | 4.73E-04 |
Sand | - | - | - | 0.8 | 0.5 | 0.5 |
Pleistocene clay | 0.0400 | 0.0040 | 0.0016 | 1.1 | 2.15E-03 | 3.23E-03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammed, J.J.; Jayawickrama, P.W.; Ekwaro-Osire, S. Uncertainty Analysis in Prediction of Settlements for Spatial Prefabricated Vertical Drains Improved Soft Soil Sites. Geosciences 2020, 10, 42. https://doi.org/10.3390/geosciences10020042
Muhammed JJ, Jayawickrama PW, Ekwaro-Osire S. Uncertainty Analysis in Prediction of Settlements for Spatial Prefabricated Vertical Drains Improved Soft Soil Sites. Geosciences. 2020; 10(2):42. https://doi.org/10.3390/geosciences10020042
Chicago/Turabian StyleMuhammed, Jemal Jibril, Priyantha W. Jayawickrama, and Stephen Ekwaro-Osire. 2020. "Uncertainty Analysis in Prediction of Settlements for Spatial Prefabricated Vertical Drains Improved Soft Soil Sites" Geosciences 10, no. 2: 42. https://doi.org/10.3390/geosciences10020042
APA StyleMuhammed, J. J., Jayawickrama, P. W., & Ekwaro-Osire, S. (2020). Uncertainty Analysis in Prediction of Settlements for Spatial Prefabricated Vertical Drains Improved Soft Soil Sites. Geosciences, 10(2), 42. https://doi.org/10.3390/geosciences10020042