Observational and Critical State Physics Descriptions of Long-Range Flow Structures
Abstract
:1. Introduction
2. Crustal Observations and Implications
2.1. The Observed Relationship between Crustal Porosity and Permeability
2.1.1. The Connection–Condition Explanation for a Lognormal Distribution in Permeability
2.1.2. Spatial Properties at the Critical State
2.1.3. The Critical State of the Earth’s Crust
2.1.4. The Power Exponent of Permeability
2.1.5. The Flow Significance of the Distribution of Permeability
2.1.6. The Power Exponent of Permeability from Two-Point Analysis of Permeability
2.1.7. Power Law Exponent of Permeability from Microearthquake Distributions
2.1.8. Power Law Exponent from Field Mapping of Fractures
2.1.9. Power Exponent from Analysis of Fracture Seismic Images
2.2. Flow From a Well: What Is at Stake
3. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sicking, C.; Malin, P. Fracture Seismic: Mapping Subsurface Connectivity. Geosciences 2019, 9, 508. [Google Scholar] [CrossRef] [Green Version]
- Rutledge, J.T. Faulting Induced by Forced Fluid Injection and Fluid Flow Forced by Faulting: An Interpretation of Hydraulic-Fracture Microseismicity, Carthage Cotton Valley Gas Field, Texas. Bull. Seism. Soc. Am. 2004, 94, 1817–1830. [Google Scholar] [CrossRef]
- Lacazette, A.; Vermilye, J.; Fereja, S.; Sicking, C. Ambient Fracture Imaging: A New Passive Seismic Method. In Proceedings of the Unconventional Resources Technology Conference, Denver, Colorado, 12–14 August 2013; pp. 2331–2340. [Google Scholar]
- Leary, P.C. Deep borehole log evidence for fractal distribution of fractures in crystalline rock. Geophys. J. Int. 1991, 107, 615–628. [Google Scholar] [CrossRef] [Green Version]
- Leary, P.C. Rock as a critical-point system and the inherent implausibility of reliable earthquake prediction. Geophys. J. Int. 1997, 131, 451–466. [Google Scholar] [CrossRef] [Green Version]
- Leary, P.C. Fractures and physical heterogeneity in crustal rock. In Heterogeneity of the Crust and Upper Mantle – Nature, Scaling and Seismic Properties; Goff, J.A., Holliger, K., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002; pp. 155–186. [Google Scholar]
- Leary, P.C.; Al-Kindy, F. Power-law scaling of spatially correlated porosity and log(permeability) sequences from north-central North Sea Brae oilfield well core. Geophys. J. Int. 2002, 148, 426–442. [Google Scholar] [CrossRef] [Green Version]
- Leary, P.; Malin, P.; Pogacnik, J. Computational EGS—Heat transport in 1/f-noise fractured media. In Proceedings of the 37th Stanford Geothermal Workshop, Stanford, CA, USA, 30 January–1 February 2012. [Google Scholar]
- Leary, P.; Pogacnik, J.; Malin, P. Fractures ~ Porosity → Connectivity ~ Permeability → EGS Flow. In Proceedings of the Geothermal Resources Council 36th Annual Conference, Reno, NV, USA, 27 September 2012. [Google Scholar]
- Leary, P.; Malin, P.; Saarno, T.; Heikkinen, P.; Diningrat, W. Coupling Crustal Seismicity to Crustal Permeability—Power-Law Spatial Correlation for EGS-Induced and Hydrothermal Seismicity. In Proceedings of the 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 11–13 February 2019. [Google Scholar]
- Barton, C.C. Fractal analysis of scaling and spatial clustering of fractures. In Fractals in the Earth Sciences; Barton, C.C., LaPointe, P.R., Eds.; Plenum Press: New York, NY, USA, 1995; pp. 141–178. [Google Scholar]
- Leary, P.; Malin, P.; Niemi, R. Fluid Flow and Heat Transport Computation for Power-Law Scaling Poroperm Media. Geofluids 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Leary, P.; Malin, P.; Saarno, T.; Kukkonen, I. αϕ ~ αϕcrit –Basement Rock EGS as Extension of Reservoir Rock Flow Processes. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 12–14 February 2018. [Google Scholar]
- Nelson, P.H.; Kibler, J.E. A Catalog of Porosity and Permeability from Core Plugs in Siliciclastic Rocks; US Geological Survey: Reston, VA, USA, 2003. [Google Scholar]
- Shockley, W. On the Statistics of Individual Variations of Productivity in Research Laboratories. Proc. IRE 1957, 45, 279–290. [Google Scholar] [CrossRef]
- Binney, J.J.; Dowrick, N.J.; Fisher, A.J.; Newman, M.E.J. Theory of Critical Phenomena: An Introduction to the Renormalization Group; Clarendon Press: Oxford, UK, 1995; p. 464. [Google Scholar]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor & Francis: London, UK, 1994; p. 192. [Google Scholar]
- Hunt, A.G.; Sahimi, M. Flow, Transport, and Reaction in Porous Media: Percolation Scaling, Critical-Path Analysis, and Effective Medium Approximation. Rev. Geophys. 2017, 55, 993–1078. [Google Scholar] [CrossRef]
- Bak, P. How Nature Works: The Science of Self-Organized Criticality; Copernicus: Göttingen, 1996; p. 229. [Google Scholar]
- Barton, C.C.; Camerlo, R.H.; Bailey, S.W. Bedrock geologic map of the Hubbard Brook experimental forest and maps of fractures and geology in roadcuts along interstate 93, Grafton County, New Hampshire, Sheet 1, Scale 1:12,000; Sheet 2, Scale 1:200: U.S. Geological Survey Miscellaneous Investigations Series Map I-2562. 1997. [Google Scholar]
- Slatt, R.M.; Minken, J.; Van Dyke, S.K.; Pyles, D.R.; Witten, A.J.; Young, R.A. Scales of Heterogeneity of an Outcropping Leveed-channel Deep-water System, Cretaceous Dad Sandstone Member, Lewis Shale, Wyoming, USA. In Atlas of Deep-Water Outcrops; Nilsen, T.H., Shew, R.D., Steffens, G.S., Stud¬lick, J.R.J., Eds.; American Association of Petroleum Geologists: Tulsa, OA, USA, 2006. [Google Scholar]
- Slatt, R.M.; Eslinger, E.; Van Dyke, S. Acoustic and petrophysical heterogeneities in a clastic deepwater depositional system: implications for up scaling from bed to seismic scales. Geophysics 2009, 74, 35–50. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L. Self-afine time series: I. Generation and Analysis. Adv. Geophys. 1999, 40, 1–90. [Google Scholar]
- Hubbert, M.K. Darcy’s law and the field equations of the flow of underground fluids. Int. Assoc. Sci. Hydrol. Bull. 1957, 2, 23–59. [Google Scholar] [CrossRef] [Green Version]
- Warren, J.E.; Root, P.J. The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 1963, 3, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Bear, J. Dynamics of Fluids in Porous Media; American Elsevier: New York, NY, USA, 1972. [Google Scholar]
- Leary, P.C.; Malin, P.E.; Saarno, T. A physical basis for the gutenberg-richter fractal scaling. In Proceedings of the 45rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 10–12 February 2020. [Google Scholar]
- Kwiatek, G.; Saarno, T.; Ader, T.; Bluemle, F.; Bohnhoff, M.; Chendorain, M.; Dresen, G.; Heikkinen, P.; Kukkonen, I.; Leary, P.; et al. Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland. Sci. Adv. 2009, 5, eaav7224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacazette, A.; Geiser, P. Comment on Davies et al., 2012–Hydraulic fractures: How far can they go? Mar. Pet. Geol. 2013, 43, 516–518. [Google Scholar] [CrossRef]
- Grant, M.A. Optimization of drilling acceptance criteria. Geothermics 2009, 38, 247–253. [Google Scholar] [CrossRef]
- De Wijs, H.J. Statistics of ore distribution. Part I: frequency distribution of assay values. J. R. Neth. Geol. Min. Soc. New Ser. 1951, 13, 365–375. [Google Scholar]
- De Wijs, H.J. Statistics of ore distribution Part II: theory of binomial distribution applied to sampling and engineering problems. J. R. Neth. Geol. Min. Soc. New Ser. 1953, 15, 125-24. [Google Scholar]
- Koch, G.S.; Link, R.F. The coefficient of variation; a guide to the sampling of ore deposits. Econ. Geol. 1971, 66, 293–301. [Google Scholar] [CrossRef]
- Clark, I.; Garnett, R.H.T. Identification of multiple mineralization phases by statistical methods. Trans. Inst. Min. Metall. 1974, 83, A43. [Google Scholar]
- Link, R.F.; Koch, G.S., Jr. Some consequences of applying lognormal theory to pseudolognormal distributions. Math. Geol. 1975, 7, 117–128. [Google Scholar] [CrossRef]
- Gerst, M.D. Revisiting the Cumulative Grade-Tonnage Relationship for Major Copper Ore Types. Econ. Geol. 2008, 103, 615–628. [Google Scholar] [CrossRef]
- Ahrens, L.H. The lognormal distribution of the elements, I. Geochim. Cosmochim Acta 1954, 5, 49–73. [Google Scholar] [CrossRef]
- Ahrens, L.H. The lognormal-type distribution of the elements, II. Geochim. Cosmochim. Acta 1954, 6, 121–131. [Google Scholar] [CrossRef]
- Ahrens, L.H. Lognormal distributions, III. Geochim. Cosmochim. Acta 1957, 11, 205–212. [Google Scholar] [CrossRef]
- Ahrens, L.H. Lognormal-type distributions in igneous rocks, IV. Geochim. Cosmochim. Acta 1963, 27, 333–343. [Google Scholar] [CrossRef]
- Brace, W.F. Permeability of crystalline and argillaceous rocks. Int. J. Rock Mech. Miner. Sci. Geomech. Abstr. 1980, 17, 241–251. [Google Scholar] [CrossRef]
- Clauser, C. Scale Effects of Permeability and Thermal Methods as Constraints for Regio-nal-Scale Averages. In Heat and Mass Transfer in Porous Media; Quintard, M., Todorovic, M., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 446–454. [Google Scholar]
- Neuman, S.P. Generalized scaling of permeabilities: Validation and effect of support scale. Geophys. Res. Lett. 1994, 21, 349–352. [Google Scholar] [CrossRef] [Green Version]
- Neuman, S.P. On advective dispersion in fractal velocity and permeability fields. Water Resour. Res. 1995, 31, 1455–1460. [Google Scholar] [CrossRef]
- Schulze-Makuck, D.; Cherhauer, D.S. Relation of hydraulic conductivity and dispersivity to scale of measurement in a carbonate aquifer. In Models for Assessing and Monitoring Groundwater Quality; Wagner, B.J., Illangasekare, T.H., Jensen, K.H., Eds.; Indigenous Allied Health Australia: Deakin, Australia, 1995. [Google Scholar]
- Archie, G.E. Introduction to Petrophysics of Reservoir Rocks. AAPG Bull. 1950, 34, 943–961. [Google Scholar]
- Biot, M.A. General theory of three-dimensional consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Carman, P.C. Fluid flow through granular beds. Trans. Inst. Chem. Engrs. 1937, 15, 150–166. [Google Scholar] [CrossRef]
- Amyx, J.W.; Bass, D.M.; Whiting, R.L. Petroleum reservoir engineering: Physical properties; McGraw-Hill: New Year, NY, USA, 1960; p. 610. [Google Scholar]
- Timur, A. An investigation of permeability, porosity, and residual water saturation relationships. In Proceedings of the SPWLA 9th Annual Logging Symposium, New Orleans, LA, USA, 23–26 June 1968. [Google Scholar]
- Hearst, J.R.; Nelson, P. Well Logging for Physical Properties; McGraw-Hill: New York, NY, USA, 1985; p. 571. [Google Scholar]
- Nelson, P.H. Permeability-porosity relationships in sedimentary rocks. Soc. Petrophys. Well-Log Anal. 1994, 35, 38–62. [Google Scholar]
- Jensen, J.L.; Hinkley, D.V.; Lake, L.W. A Statistical Study of Reservoir Permeability: Distributions, Correlations, and Averages. SPE Form. Evaluation 1987, 2, 461–468. [Google Scholar] [CrossRef]
- Ingebritsen, S.; Sanford, W.; Neuzil, W. Groundwater in Geological Processes; Cambridge University Press: Cambridge, UK, 1999; p. 536. [Google Scholar]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Medial; Cambridge University Press: Cambridge, UK, 1998; p. 2009. [Google Scholar]
- Barton, C.C.; La Pointe, P.R. Fractals in the Earth Sciences; Springer (Plenum Press): New York, NY, USA, 1995. [Google Scholar]
- Barton, C.C.; La Pointe, P.R. Fractals in Petroleum Geology and Earth Processes; Springer (Plenum Press): New York, NY, USA, 1995. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malin, P.E.; Leary, P.C.; Cathles, L.M.; Barton, C.C. Observational and Critical State Physics Descriptions of Long-Range Flow Structures. Geosciences 2020, 10, 50. https://doi.org/10.3390/geosciences10020050
Malin PE, Leary PC, Cathles LM, Barton CC. Observational and Critical State Physics Descriptions of Long-Range Flow Structures. Geosciences. 2020; 10(2):50. https://doi.org/10.3390/geosciences10020050
Chicago/Turabian StyleMalin, Peter E., Peter C. Leary, Lawrence M. Cathles, and Christopher C. Barton. 2020. "Observational and Critical State Physics Descriptions of Long-Range Flow Structures" Geosciences 10, no. 2: 50. https://doi.org/10.3390/geosciences10020050
APA StyleMalin, P. E., Leary, P. C., Cathles, L. M., & Barton, C. C. (2020). Observational and Critical State Physics Descriptions of Long-Range Flow Structures. Geosciences, 10(2), 50. https://doi.org/10.3390/geosciences10020050