n-Alkane Distribution—A Paleovegetation Change Indicator during the Period from Late Glacial to Late Holocene on Russian Plain (Bryansk Region)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Location | Age, Years BP | Horizon, Depth, cm | Corg., % * | P2O5 org, mg/kg * | δ13Corg, ‰ * | δ13Ccarb, ‰ * | n-alkane, tot., μg/g d.w. ** |
---|---|---|---|---|---|---|---|
1. Quarry, v. Telec, micro- elevation | Ap, 0−30 | 1.2 | 115.0 | −26.1 | non-carb. | 1.03 | |
AE, 30−35 | 0.4 | 17.8 | −25.4 | non-carb. | 0.19 | ||
EB, 35−46 | 0.2 | 18.4 | −24.7 | non-carb. | 0.41 | ||
BC, 46−65 | 0.2 | 10.6 | −24.7 | non-carb. | - | ||
C, 65−85 | 0.2 | 0.0 | −24.1 | non-carb. | - | ||
6690 ± 110 | Ab, 85−99 | 0.4 | 97.2 | −25.4 | −13.5 | - | |
C1, 99−120 | 0.3 | 83.9 | −25.3 | −10.0 | - | ||
C2, 120−.. | 0.2 | 38.9 | −25.7 | −8.3 | - | ||
C3, 100−250 | 0.5 | 29.9 | −23.1 | non-carb. | |||
16,500 ± 230 | Bb, 250−275 | 0.3 | 0.0 | −26.5 | −22.3 | 0.00 | |
BCb, 275−300 | 0.4 | 68.0 | −25.6 | −22.4 | 0.23 | ||
ORTZ1, 350−420 | 0.3 | 44.5 | −26.5 | −22.0 | - | ||
Eg, 770−970 | 0.1 | 0.0 | −26.6 | non-carb. | - | ||
C4, 970−1000 | 0.1 | 0.0 | −26.7 | non-carb. | - | ||
C5, 1000−1300 | 0.2 | 0.0 | −25.7 | non-carb. | - | ||
2. Quarry, v.Krasnoe, micro- depression | Ap, 0−30 | 1.8 | 178.7 | −25.0 | non-carb. | 0.73 | |
AE, 30−50 | 1.5 | 311.9 | −26.4 | non-carb. | 0.10 | ||
2180 ± 60, 1650 ± 60 | *** Ab, 50−85 | 2.3 | 635.8 | −28.4 | non-carb. | 0.15 | |
AEb, 85−100 | 1.3 | 389.8 | −26.2 | non-carb. | - | ||
Eb, 100−125 | 0.4 | 125.4 | −25.6 | non-carb. | - | ||
EBb, 124−140 | 0.6 | 0.0 | −26.1 | non-carb. | - | ||
Bb, 140−175 | 0.3 | 0.0 | −26.1 | non-carb. | 1.02 | ||
C1, 175−270 | 0.2 | 0.0 | −25.3 | non-carb. | - | ||
C2,fe,1, 445–470 | 0.2 | 0.0 | −26.6 | non-carb. | - | ||
12,930 ± 170 | Bb2, 470–495 | 0.4 | 106.3 | −24.8 | −8.8 | 0.80 | |
BCfe,b2, 495−500 | 0.1 | 0.0 | −25.3 | non-carb. | - | ||
Eg, 500−510 | 0.1 | 0.0 | −27.0 | non-carb. | - | ||
BCfe,b3 510−520 | 0.1 | 7.8 | −27.2 | non-carb. | - | ||
C3 520−570 | 0.1 | 2.6 | −26.7 | non-carb. | - | ||
3. Modern soil, depression * | A, 10−45 | 3.4 | 271.2 | −32.7 | non-carb. | 1.14 | |
*** Ab, 40−65 | 4.0 | 170.0 | −29.5 | non-carb. | 2.67 | ||
AEg, 60−80 | 0.8 | 50.8 | −27.5 | non-carb. | 2.15 | ||
Eg, 80−110 | 0.3 | 0.0 | −27.0 | non-carb. | - |
Sample, Depth, cm | Relief Position | Age, Years cal. BP | n-alkane tot.(C17-36), μg/kg d.w. | Cmax | OEP1 | ACL27-33 | CPI27-33 | (nC31 + nC33)/ (nC27 + nC29) | Paq |
---|---|---|---|---|---|---|---|---|---|
1. Quarry Telec | |||||||||
Ap, 0−30 | micro-elevation | 1027.9 | C29 | 4.3 | 29 | 3.5 | 0.63 | 0.30 | |
AE, 30−35 | 190.2 | C21 | - | 27 | - | 0 | 1.0 | ||
EB, 35−46 | 406.2 | C20 | 0.7 | 27 | 1.4 | 0 | 0.93 | ||
BCb, 275−300 | 16,500 ± 230 | 230.5 | C31 | 3.8 | 30 | 2.6 | 1.39 | 0.11 | |
2. Quarry Krasnoe | |||||||||
Ap, 0−30 | micro-depression | 730.0 | C29 | 4.3 | 29 | 3.5 | 0.40 | 0.44 | |
AE, 30−50 | 97.6 | C22 | 1.00 | ||||||
Ab, 50−85 | 2180 ± 60, 1650 ± 60 | 151.3 | C21 | - | 27 | - | 0 | 1.00 | |
Bb, 140−175 | 1020.3 | C21 | 0.8 | 28 | 1.4 | 0.08 | 0.81 | ||
Bb2, 470−495 | 12,930 ± 170 | 804.3 | C31 | 5.7 | 31 | 4.0 | 1.95 | 0.10 | |
3. Modern soil, depression | |||||||||
A, 10−45 | depression | 1142.6 | C29 | 3.4 | 29 | 3.7 | 0.23 | 0.51 | |
Ab, 40−65 | 2668.6 | C29 | 4.8 | 29 | 4.8 | 0.27 | 0.46 | ||
AEg, 60−80 | 2153.9 | C25 | 0.9 | 28 | 1.0 | 0.14 | 0.71 |
References
- Bolihovskaya, N.S. Evolution of the Loess-Soil Formation of Northern Eurasia; MSU Press: Moscow, Russia, 1995. [Google Scholar]
- Velichko, A.A.; Morozova, T.D.; Nechaev, V.P.; Porozhnyakova, O.M. Paleocryogenesis, Soil Cover and Agriculture; Nauka: Moscow, Russia, 1996. [Google Scholar]
- Kovaleva, N.O.; Stolpnikova, E.M.; Kovalev, I.V. Paleoecological reconstruction for the Podesenie region on the Late Pleistocene-Holocene boundary (according to carbon isotopic composition of the soil). Povolzhskiy J. Eco. 2013, 4, 402–413. [Google Scholar]
- Morozova, T.D. Development of the Soil Cover of Europe in the Late Pleistocene; Nauka: Moscow, Russia, 1981. [Google Scholar]
- Gugalinskaya, L.A. Soil Formation and Cryogenesis in the Center of the East European Plain in late Pleistocene; ONTI NTsBI AN SSSR: Pushchino, Russia, 1982. [Google Scholar]
- Makeev, A.O. Pedogenic alteration of aeolian sediments in the upper loess mantles of the Russian Plain. Quat. Int. 2009, 209, 79–94. [Google Scholar] [CrossRef]
- Sedov, S.N.; Khokhlova, O.S.; Sinitsyn, A.A.; Korkka, M.A.; Rusakov, A.V.; Ortega, B.; Solleiro, E.; Rozanova, M.S.; Kuznetsova, A.M.; Kazdym, A.A. Late Pleistocene paleosol sequences as an instrument for the local paleographic reconstruction of the Kostenki 14 key section (Voronezh oblast) as an example. Eurasian Soil Sci. 2010, 43, 876–892. [Google Scholar] [CrossRef]
- Sycheva, S.; Khokhlova, O.; Pushkina, P.; Ukrainsky, P. Interrelations of the Bryansk paleosol (end of MIS 3) with the Holocene surface soils in micro-depressions of the central forest-steppe within the Russian Upland. Catena 2019, 172, 619–623. [Google Scholar] [CrossRef]
- Gennadiev, A.N.; Zavgorodnyaya, Y.A.; Pikovskii, Y.I.; Smirnova, M.A. Alkanes as components of soil hydrocarbon status: Behavior and indication significance. Eurasian Soil Sci. 2018, 51, 32–41. [Google Scholar] [CrossRef]
- Anokhina, N.A.; Demin, V.V.; Zavgorodnyaya, Y.A. Compositions of n-alkanes and n-methyl ketones in soils of the forest-park zone of Moscow. Eurasian Soil Sci. 2018, 51, 637–646. [Google Scholar] [CrossRef]
- Velichko, A.A. Natural Process in the Pleistocene; Nauka: Moscow, Russia, 1973. [Google Scholar]
- Alifanov, V.M.; Gugalinskaya, L.A.; Ovchinnikov, A.Y. Paleocriogenesis and a Variety of Soils on the Center of East European Plain; GEOS: Moscow, Russia, 2010. [Google Scholar]
- Zech, M.; Rass, S.; Buggle, B.; Loscher, M.; Zoller, L. Reconsruction of the Late Quaternary paleoenviroments of Nussloch loess paleosol sequence, Germany, using n-alkane biomarkers. Quat. Res. 2012, 78, 226–235. [Google Scholar] [CrossRef]
- Zech, M.; Buggle, B.; Leiber, K.; Marcovic, S.; Glaser, B.; Hambach, U.; Huwe, B.; Stevens, T.; Sumegi, P.; Wiesenberg, G.; et al. Reconstructing Quaternary vegetation in the Carpathian Basin, SE Europe, using n-alkane biomarkers as molecular fossils: Problems and possible solutions, potential and limitations. E&G Quat. Sci. J. 2009, 58, 148–155. [Google Scholar]
- Zech, R.; Zech, M.; Marković, S.; Hambach, U.; Huang, Y. Humid glacials, arid interglacials? Critical thoughts on pedogenesis and paleoclimate based on multi-proxy analyses of the loess-paleosol sequence Crvenka, Nothern Serbia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 387, 165–175. [Google Scholar] [CrossRef]
- Stolpnikova, E.M.; Kovaleva, N.O.; Kovalev, I.V. The Carbon Isotope Composition of Organic Matter and the Age od Paleosols from Wurm Glaciation Interstadials to Holocene (Bryansk region, Russia). IOP Conf. Series EES 2018, 107, 1–6. [Google Scholar] [CrossRef]
- Kogel-Knaber, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Avato, P.; Bianchi, G.; Mariani, G. Epicuticular waxes of Sorghum and some compositional changes with plant age. Phytochemistry 1984, 23, 2843–2846. [Google Scholar] [CrossRef]
- Bull, I.D.; van Bergen, P.F.; Nott, C.J.; Poulton, P.R.; Evershed, R.P. Organic geochemical studies of soils from the Rothamsted classical experiments. The fate of lipids in different long-term experiments. Org. Geochem. 2000, 31, 389–408. [Google Scholar] [CrossRef]
- Jetter, R.; Kunst, L.; Samuels, A.L. Composition of plant cuticular waxes//Biology of plant cuticle; Wiley-Blackwell: Hoboken, NJ, USA, 2006; Volume 23, pp. 145–181. [Google Scholar]
- Luo, P.; Peng, P.; Lu, H.Y.; Zheng, Z.; Wang, X. Latitudinal variations of CPI values of long-chain n-alkanes in surface soil: Evidence for CPI as a proxy of aridity. Sci. China, Earth Sci. 2012, 55, 1134–1146. [Google Scholar] [CrossRef]
- Bush, R.T.; McInerney, F.A. Leaf wax n-alkane distributions in and across modern plants: Implications to paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 2013, 117, 161–179. [Google Scholar] [CrossRef]
- Zech, M.; Pedentchouk, N.; Markovic, S.B.; Glaser, B. Effect of leaf litter degradation and seasonality on D/H isotope ratios of n-alkane biomarkers. Geochim. Cosmochim. Acta 2011, 75, 4917–4928. [Google Scholar] [CrossRef] [Green Version]
- Peters, K.E.; Walter, C.C.; Moldowan, J.M. The n-alkane concentrations in buds and leaves of browsed broad leaf trees. J. Agric. Sci. 2000, 135, 311–320. [Google Scholar] [CrossRef]
- Loez-Dias, V.; Blanco, C.D.; Bechtel, A. Different source of n-alkanes and n-alkan-2 ones in a 6000 cal. yr. BP Sphagnum-rich temperate peat bog. Org. Geochem. 2013, 57, 7–10. [Google Scholar]
- Van Beilen, J.B.; Neuenschwander, M.; Smits, T.H.M.; Roth, C.; Balada, S.B.; Witholt, B. Rubredoxins involved in alkane oxidation. J. Bacteriol. 2003, 184, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.D.; Cooney, J.J. Aliphatic hydrocarbons of Cladosporium resinae cultured on glucose, glutamic acid, and hydrocarbons. Appl. Microbiol. 1973, 26, 705–708. [Google Scholar] [CrossRef] [Green Version]
- Bagaeva, T.V.; Zinurova, E.E. Comparative characterization of extracellular and intracellular hydrocarbons of Clostridium pasteurianum. Biochemistry (Moscow) 2004, 69, 427–428. [Google Scholar] [CrossRef] [PubMed]
- Bagaeva, T.V.; Zolotukhina, L.M. The formation of hydrocarbons by sulfate reducing bacteria grown under chemolithoheterotrophic conditions. Microbiology (Moscow) 1994, 63, 993–995. [Google Scholar]
- Bagaeva, T.V. The ability of sulfate-reducing bacteria of various taxonomic groups to synthesize extracellular hydrocarbons. Microbiology (Moscow) 1997, 66, 796–799. [Google Scholar]
- Bagaeva, T.V. Effect of the composition of the gaseous phase on the formation of hydrocarbons in Desulfovibrio desulfuricans. Appl. Biochem. Microbiol. (Moscow) 2000, 36, 195–198. [Google Scholar]
- Koser, J.; Volkman, J.K.; Rullkotter, J.; Scholzbottcher, B.M.; Rethmeier, J.; Fischer, U. Monomethyl-branched, dimethyl-branched, and trimethyl-branched alkanes in cultures of the filamentous cyanobacterium Calothrix scopulorum. Org. Geochem. 1999, 30, 1367–1379. [Google Scholar] [CrossRef]
- Fisher, D.J.; Holloway, P.J.; Richmond, D.V. Fatty acid and hydrocarbon constituents of the surface and wall lipids of some fungals pores. Microbiology 1972, 72, 71–78. [Google Scholar]
- Joes, J.G. Studies on lipids of soil microorganisms with particular reference to hydrocarbons. Microbiology 1969, 59, 145–152. [Google Scholar]
- Eglington, G.; Logan, G.A. Molecular preservation. Phill. Trans. Roy. Soc. London 1991, 333, 315–328. [Google Scholar]
- Wentzel, A.; Ellingsen, T.E.; Kotlar, H.K.; Zotchev, S.B.; Throne-Holst, M. Bacterial metabolism of long-chain n-alkanes. Appl. Microbiol. Biotechnol. 2007, 76, 1209–1221. [Google Scholar] [CrossRef]
- Handley, L.; Pearson, P.N.; McMillan, I.K.; Pancost, R.D. Large terrestrial and marine carbon and hydrocarbon isotope excursions in a new Paleocene/Eocene boundary section from Tanzania. Earth Planet. Sci. Lett. 2008, 275, 17–25. [Google Scholar] [CrossRef]
- Singh, S.N. Microbial Degradation of Xenobiotics; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Quenea, K.; Derenne, S.; Largeau, C.; Rumpel, C.; Mariotti, A. Variation in lipid relative abundance and composition among different particle size fractions of a forest soil. Org. Geochem. 2004, 35, 1355–1370. [Google Scholar] [CrossRef]
- Jansen, B.; Hausmann, N.S.; Tonneijck, F.H.; Verstraten, J.M.; de Vooght, P. Characteristic straight-chain lipid ratios as a quick method to assess past forest—paramo transitions in the Ecuadorian Andes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 262, 129–139. [Google Scholar] [CrossRef]
- Duchko, M.A.; Gulaya, E.V.; Serebrenikova, O.V.; Strelnikova, E.B.; Preis, Y.I. Distribution of n-alkanes, steroids and triterpenoids in peat and plants of swamp “Tyomnoe”. Proc. Tomsk Polytech. Univ. 2013, 323, 40–44. [Google Scholar]
- Huang, J.; Lockheart, M.J.; Collister, J.W.; Eglington, G. Molecular and isotopic biogeochemistry of the Miocene Clarkia Formation: Hydrocarbons and alcohols. Org. Geochem. 1995, 23, 785–801. [Google Scholar] [CrossRef]
- Otto, A.; Simoneit, B.R.T.; Rember, W.C. Conifer and angiosperm biomarkers in clay sediments and fossil plants from the Miocene Clarkia Formation, Idaho, USA. Org. Geochem. 2005, 36, 907–922. [Google Scholar] [CrossRef]
- Aichner, B.; Ott, F.; Slowinski, M.; Noryskievicz, A.M.; Brauer, A.; Sashce, D. Leaf wax n-alkane distributions record ecological changes during Younger Dryas at Trzechowskie paleolake (northern Poland) without temporal delay. Clim. Past 2018, 14, 1607–1624. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Li, L.; Tarozo, R.; Longo, W.M.; Wang, K.J.; Dong, H.; Huang, Y. Microbial production of long-chain n-alkanes: Implication for interpreting sedimentary leaf wax signals. Org. Geochem. 2018, 115, 24–31. [Google Scholar] [CrossRef]
- McKirdly, D.M.; Thorpe, C.S.; Haynes, D.E.; Grice, K.; Krull, E.S.; Halverson, G.P.; Webster, L.J. The biogeochemical evolution of the Coorong during the mid- to late Holocene: An elemental, isotopic and biomarker perspective. Org. Geochem. 2010, 41, 96–110. [Google Scholar] [CrossRef]
- Vogts, A.; Badewien, T.; Rullkötter, J.; Schefuß, E. Near-constant apparent hydrogen isotope fractionation between leaf wax n-alkanes and precipitation in tropical regions: Evidence from a marine sediment transect off SW Africa. Org. Geochem. 2016, 96, 18–27. [Google Scholar] [CrossRef]
- Bliedtner, M.; Zech, R.; Kühn, P.; Schneider, B.; Zielhofer, C.; von Suchodoletz, H. The potential of leaf wax biomarkers from fluvial soil-sediment sequences for paleovegetation reconstructions—Apper Alazani River, central southern Greater Caucasus (Geogia). Quat. Sci. Rev. 2018, 196, 62–79. [Google Scholar] [CrossRef]
- Obreht, I.; Zeeden, C.; Hambach, U.; Veres, D.; Marković, S.B.; Lehmkuhl, F. A critical revaluation of paleoclimate proxy records from loess in the Carpatian Basin. Earth-Sci. Rev. 2019, 190, 498–520. [Google Scholar] [CrossRef]
- Tyuryukanov, A.N.; Bystritskaya, T.L. Opolya of Central Russia and Soils; Nauka: Moscow, Russia, 1971. [Google Scholar]
- Skripkin, V.; Kovalyukh, N. Recent developments in the procedures used at the SSCER laboratory for the preparation of Lithium Carbide. Radiocarbon 1998, 40, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, C.B. Bayesian analysis of radiocarbon dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Bronk Ramsey, C.; Grootes, P.M.; Guilderson, T.P.; Haflidason, H.; Hajdas, I.; et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Svendsen, J.I.; Alexanderson, H.; Astakhov, V.I.; Demidov, I.; Dowdeswell, J.A.; Funder, S.; Gataullin, V.; Henriksen, M.; Hjort, C.; Houmark-Nielsen, M.; et al. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. 2004, 23, 1229–1271. [Google Scholar] [CrossRef]
- Mol, J. Difinition of time slices. Landscape and climate change during the Last Glaciation in Europe; A review. In Evolution of the European Ecosystems during Pleistocene—Holocene transition (24–8 kyr BP); Markova, van Kolfschoten, T., Eds.; KMK Scientific Press Ltd.: Moscow, Russia, 2008; pp. 73–91. [Google Scholar]
- Kovaleva, N. Northern Tien-Shan paleosol sedimentary sequences as a record of major climatic events in the last 30,000 years. Revista Mexicana de Ciencias Geologicas 2004, 21-1, 71–78. [Google Scholar]
- Khokhlova, O.S.; Khokhlov, A.A.; Kuznetsova, A.M.; Stolpnikova, E.M.; Kovaleva, N.O.; Lyubin, V.P.; Belyaeva, E.V. Carbonate features in the uppermost layers of Quaternary deposits, Northern Armenia, and their significance for paleoenvironmental reconstruction. Quat. Int. 2016, 418, 94–104. [Google Scholar] [CrossRef]
- Markova, A.K.; Van Kolfschoten, T.; Bohncke, S.; Kosintsev, P.A.; Mol, J.; Puzachenko, A.Y. Evolution of the European Ecosystems during Pleistocene—Holocene transition (24–8 kyr BP); Scientific Press Ltd.: Moscow, Russia, 2008. [Google Scholar]
- Simakova, A.N.; Puzachenko, A.Y. Paleovegetation of Europe during the Bölling-Alleröd interstadial complex warming (12.4–10.9 ka BP). Polish Geol. Inst. Spec. Pap. 2005, 16, 116–122. [Google Scholar]
Sample | Depth (cm) | Lab. Number | Material | Radiocarbon Age (yr) | Calendar Age (yr) |
---|---|---|---|---|---|
Ab, micro-depression | 50−85 | Ki-18775 | Humic acids | 1650 ± 60 | 1σ 1 334−530 BC 2σ 257−539 BC |
Ab, micro-depression | 50−85 | Ki-17415 | Humic acids | 2180 ± 60 | 1σ 360−270 BC 2σ 390−90 BC |
Ab, micro-elevation | 85−99 | Ki-18776 | Carbonates | 6690 ± 110 | 1σ 5706−5527 BC 2 5837−5392 BC |
Bb2, Krasnoe | 470−495 | Ki-17413 | Humic acids | 12930 ± 170 | 1σ 14000−13200 BC 2σ 14200−12400 BC |
Bb, Telec | 250−275 | Ki-17414 | Humic acids | 16500 ± 230 | 1σ 18150−17300 BC 2σ 18600−16900 BC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolpnikova, E.; Kovaleva, N.; Kovalev, I. n-Alkane Distribution—A Paleovegetation Change Indicator during the Period from Late Glacial to Late Holocene on Russian Plain (Bryansk Region). Geosciences 2020, 10, 86. https://doi.org/10.3390/geosciences10030086
Stolpnikova E, Kovaleva N, Kovalev I. n-Alkane Distribution—A Paleovegetation Change Indicator during the Period from Late Glacial to Late Holocene on Russian Plain (Bryansk Region). Geosciences. 2020; 10(3):86. https://doi.org/10.3390/geosciences10030086
Chicago/Turabian StyleStolpnikova, Ekaterina, Natalia Kovaleva, and Ivan Kovalev. 2020. "n-Alkane Distribution—A Paleovegetation Change Indicator during the Period from Late Glacial to Late Holocene on Russian Plain (Bryansk Region)" Geosciences 10, no. 3: 86. https://doi.org/10.3390/geosciences10030086