Rock Features and Alteration of Stone Materials Used for the Built Environment: A Review of Recent Publications on Ageing Tests
Abstract
:1. Introduction
2. Dataset
3. Rocks and Tests
3.1. Lithological Diversity
- SC, sedimentary carbonate rocks (mostly diverse types of limestones and including, travertines, carbonate tufas and dolostones);
- SD, sedimentary detrital rocks, a group that in the studied set corresponds to arenaceous rocks;
- P, pyroclastic rocks;
- M, magmatic rocks (which include plutonic and lava rocks);
- MC, metamorphic carbonate rocks (in the data collected all occurrences correspond to marbles);
- MS, metamorphic silicate (with diverse crystals-sizes and composition, from slates to gneiss, and including serpentinites).
3.2. Ageing Tests
4. Effects of Ageing Tests on Rock Features
4.1. Minerals and Other Phase Constituents
4.2. Pore Network Features
4.3. Textural and Structural Features
4.4. Multiple Factors
5. Final Considerations
Funding
Acknowledgments
Conflicts of Interest
References
- U.S. Geological Survey, Mineral Commodity Summaries, February 2019, pp. 156–157, STONE (DIMENSION). Available online: https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/mcs-2019-stond.pdf (accessed on 30 December 2019).
- Herodotus. The History of Herodotus; Volume I. Translated into English by Macaulay, G.C. 1890 edition; MacMillan and Co.: London, UK; New York, NY, USA; Available online: http://www.gutenberg.org/ebooks/2707 (accessed on 30 December 2019).
- Vitruvius. The Ten Books on Architecture; Translated by Morris Hicky Morgan; Harvard University Press: Cambridge, MA, USA, 1914; Available online: http://www.gutenberg.org/ebooks/20239 (accessed on 30 December 2019).
- Stone in Architecture; Siegesmund, S.; Snethlage, R. (Eds.) Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-45154-6. [Google Scholar]
- Vidal, F.; Vicente, R.; Mendes Silva, J. Review of environmental and air pollution impacts on built heritage: 10 questions on corrosion and soiling effects for urban intervention. J. Cult. Herit. 2019, 37, 273–295. [Google Scholar] [CrossRef]
- Lubelli, B.; Cnudde, V.; Diaz-Goncalves, T.; Franzoni, E.; van Hees, R.P.J.; Ioannou, I.; Menendez, B.; Nunes, C.; Siedel, H.; Stefanidou, M.; et al. Towards a more effective and reliable salt crystallization test for porous building materials: State of the art. Mater. Struct. 2018, 51, 55. [Google Scholar] [CrossRef]
- Pinna, D. Coping with Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives; AAP Apple Academic Press: Oakville, ON, Canada; Waretown, NJ, USA, 2017; ISBN 978-1-77188-532-4. [Google Scholar]
- Ahmad, M.; Ansari, M.K.; Singh, R.; Sharma, L.K.; Singh, T.N. Assessment of durability and weathering state of some igneous and metamorphic rocks using micropetrographic index and rock durability indicators: A case study. Geotech. Geol. Eng. 2017, 35, 827–842. [Google Scholar] [CrossRef]
- Asryan, L.; Ollé, A.; Moloney, N.; King, T.; Murray, J. Chemical alteration of lithic artefacts: An experimental case study on the effect of guano on stone flakes and its contextualization in the archaeological assemblage of azokh cave (Southern Caucasus): Chemical alteration caused by bat guano on lithic artefacts. Archaeometry 2017, 59, 981–999. [Google Scholar]
- Barriuso, B.C.; Botticelli, G.; Cuzman, O.A.; Osticioli, I.; Tiano, P.; Matteini, M. Conservation of calcareous stone monuments: Screening different diammonium phosphate based formulations for countering phototrophic colonization. J. Cult. Herit. 2017, 27, 97–106. [Google Scholar] [CrossRef]
- Cámara, B.; de Buergo, M.Á.; Bethencourt, M.; Fernández-Montblanc, T.; La Russa, M.F.; Ricca, M.; Fort, R. Biodeterioration of marble in an underwater environment. Sci. Total Environ. 2017, 609, 109–122. [Google Scholar] [CrossRef]
- Carmona-Quiroga, P.M.; Jacobs, R.M.J.; Martínez-Ramírez, S.; Viles, H.A. Durability of anti-graffiti coatings on stone: Natural vs. accelerated weathering. PLoS ONE 2017, 12, e0172347. [Google Scholar] [CrossRef] [Green Version]
- Comite, V.; Álvarez de Buergo, M.; Barca, D.; Belfiore, C.M.; Bonazza, A.; La Russa, M.F.; Pezzino, A.; Randazzo, L.; Ruffolo, S.A. Damage monitoring on carbonate stones: Field exposure tests contributing to pollution impact evaluation in two Italian sites. Constr. Build. Mater. 2017, 152, 907–922. [Google Scholar] [CrossRef]
- De Kock, T.; Van Stappen, J.; Fronteau, G.; Boone, M.; De Boever, W.; Dagrain, F.; Silversmit, G.; Vincze, L.; Cnudde, V. Laminar gypsum crust on lede stone: Microspatial characterization and laboratory acid weathering. Talanta 2017, 162, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Germinario, L.; Siegesmund, S.; Maritan, L.; Mazzoli, C. Petrophysical and mechanical properties of Euganean trachyte and implications for dimension stone decay and durability performance. Environ. Earth Sci. 2017, 76, 739. [Google Scholar] [CrossRef]
- Heidari, M.; Torabi-Kaveh, M.; Mohseni, H. Assessment of the effects of freeze—Thaw and salt crystallization ageing tests on Anahita temple stone, Kangavar, West of Iran. Geotech. Geol. Eng. 2017, 35, 121–136. [Google Scholar] [CrossRef]
- Heidari, M.; Chastre, C.; Torabi-Kaveh, M.; Ludovico-Marques, M.; Mohseni, H. Application of fuzzy inference system for determining weathering degree of some monument stones in Iran. J. Cult. Herit. 2017, 25, 41–55. [Google Scholar] [CrossRef]
- Heidari, M.; Torabi-Kaveh, M.; Chastre, C.; Ludovico-Marques, M.; Mohseni, H.; Akefi, H. Determination of weathering degree of the Persepolis stone under laboratory and natural conditions using fuzzy inference system. Constr. Build. Mater. 2017, 145, 28–41. [Google Scholar] [CrossRef]
- Kirtzel, J.; Siegel, D.; Krause, K.; Kothe, E. Stone-eating fungi. In Advances in Applied Microbiology; Elsevier, 2017; Volume 99, pp. 83–101. ISBN 978-0-12-812050-7. [Google Scholar]
- La Russa, M.F.; Ruffolo, S.A.; de Buergo, M.Á.; Ricca, M.; Belfiore, C.M.; Pezzino, A.; Crisci, G.M. The behaviour of consolidated Neapolitan yellow Tuff against salt weathering. Bull. Eng. Geol. Environ. 2017, 76, 115–124. [Google Scholar] [CrossRef]
- Mahmutoğlu, Y. Prediction of weathering by thermal degradation of a coarse-grained marble using ultrasonic pulse velocity. Environ. Earth Sci. 2017, 76, 435. [Google Scholar] [CrossRef]
- Martinho, E.; Dionisio, A.; Mendes, M. Simulation of a portuguese limestone masonry structure submitted to fire: 3D ultrasonic tomography approach. Int. J. Conserv. Sci. 2017, 8, 565–580. [Google Scholar]
- Navarro, R.; Cruz, A.S.; Arriaga, L.; Baltuille, J.M. Caracterización de los principales tipos de mármol extraídos en la comarca de Macael (Almería, sureste de España) y su importancia a lo largo de la historia. Bol. Geol. Min. 2017, 128, 345–393. [Google Scholar] [CrossRef]
- Özşen, H.; Bozdağ, A.; İnce, İ. Effect of salt crystallization on weathering of pyroclastic rocks from Cappadocia, Turkey. Arab. J. Geosci. 2017, 10, 258. [Google Scholar] [CrossRef]
- Ruffolo, S.A.; La Russa, M.F.; Ricca, M.; Belfiore, C.M.; Macchia, A.; Comite, V.; Pezzino, A.; Crisci, G.M. New insights on the consolidation of salt weathered limestone: The case study of Modica stone. Bull. Eng. Geol. Environ. 2017, 76, 11–20. [Google Scholar] [CrossRef]
- Rusin, Z.; Świercz, P. Frost resistance of rock materials. Constr. Build. Mater. 2017, 148, 704–714. [Google Scholar] [CrossRef]
- Sena da Fonseca, B.; Ferreira Pinto, A.P.; Piçarra, S.; Montemor, M.F. Artificial aging route for assessing the potential efficacy of consolidation treatments applied to porous carbonate stones. Mater. Des. 2017, 120, 10–21. [Google Scholar] [CrossRef]
- Sousa, L.; Barabasch, J.; Stein, K.-J.; Siegesmund, S. Characterization and quality assessment of granitic building stone deposits: A case study of two different Portuguese granites. Eng. Geol. 2017, 221, 29–40. [Google Scholar] [CrossRef]
- Wang, P.; Xu, J.; Fang, X.; Wang, P.; Zheng, G.; Wen, M. Ultrasonic time-frequency method to evaluate the deterioration properties of rock suffered from freeze-thaw weathering. Cold Reg. Sci. Technol. 2017, 143, 13–22. [Google Scholar] [CrossRef]
- Xu, F.; Li, D. Modification of HBA/D230 polymer for stone protection. J. Polym. Environ. 2017, 25, 1304–1312. [Google Scholar] [CrossRef]
- Aly, N.; Wangler, T.; Török, Á. The effect of stylolites on the deterioration of limestone: Possible mechanisms of damage evolution. Environ. Earth Sci. 2018, 77, 565. [Google Scholar] [CrossRef]
- Auras, M.; Bundschuh, P.; Eichhorn, J.; Kirchner, D.; Mach, M.; Seewald, B.; Scheuvens, D.; Snethlage, R. Salt deposition and soiling of stone facades by traffic-induced immissions. Environ. Earth Sci. 2018, 77, 323. [Google Scholar] [CrossRef]
- Benavente, D.; Martinez-Martinez, J.; Cueto, N.; Ordoñez, S.; Garcia-del-Cura, M.A. Impact of salt and frost weathering on the physical and durability properties of travertines and carbonate tufas used as building material. Environ. Earth Sci. 2018, 77, 147. [Google Scholar] [CrossRef] [Green Version]
- Cabello Briones, C.; Viles, H. An assessment of the role of an open shelter in reducing soiling and microbial growth on the archaeological site of the bishop’s palace, Witney, England. Conserv. Manag. Archaeol. Sites 2018, 20, 2–17. [Google Scholar] [CrossRef]
- Carvalho, C.; Silva, Z.; Simão, J. Evaluation of Portuguese limestones’ susceptibility to salt mist through laboratory testing. Environ. Earth Sci. 2018, 77, 523. [Google Scholar] [CrossRef]
- Deng, H.; Yu, S.; Deng, J. Damage characteristics of sandstone subjected to coupled effect of freezing-thawing cycles and acid environment. Adv. Civ. Eng. 2018, 2018, 3560780. [Google Scholar] [CrossRef] [Green Version]
- Eslami, J.; Walbert, C.; Beaucour, A.-L.; Bourges, A.; Noumowe, A. Influence of physical and mechanical properties on the durability of limestone subjected to freeze-thaw cycles. Constr. Build. Mater. 2018, 162, 420–429. [Google Scholar] [CrossRef]
- Gibeaux, S.; Thomachot-Schneider, C.; Eyssautier-Chuine, S.; Marin, B.; Vazquez, P. Simulation of acid weathering on natural and artificial building stones according to the current atmospheric SO2/NO x rate. Environ. Earth Sci. 2018, 77, 327. [Google Scholar] [CrossRef]
- Gibeaux, S.; Vázquez, P.; De Kock, T.; Cnudde, V.; Thomachot-Schneider, C. Weathering assessment under X-ray tomography of building stones exposed to acid atmospheres at current pollution rate. Constr. Build. Mater. 2018, 168, 187–198. [Google Scholar] [CrossRef]
- Grossi, D.; Del Lama, E.A. Avaliação da eficácia de hidrofugantes e antigraffiti no Arenito Itararé. Geol. USP Sér. Cient. 2018, 18, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, M.; Bashiri Goudarzi, M.; Jamshidi, A. Experimental investigation on the performance of Schmidt hammer test in durability assessment of carbonate building stones against freeze-thaw weathering. Environ. Earth Sci. 2018, 77, 684. [Google Scholar] [CrossRef]
- Ksinopoulou, E.; Bakolas, A.; Moropoulou, A. Consolidation effectiveness of modified Si-based nanocomposites applied to limestones. Mater. Struct. 2018, 51, 156. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Pola, A.; García-Sánchez, L.; Reyes Agustin, G.; Osorio Ocampo, L.S.; Macías Vázquez, J.L.; Robles-Camacho, J. Building stones used in the architectural heritage of Morelia (México): Quarries location, rock durability and stone compatibility in the monument. Environ. Earth Sci. 2018, 77, 167. [Google Scholar] [CrossRef]
- Misra, A.; Franco Castillo, I.; Müller, D.P.; González, C.; Eyssautier-Chuine, S.; Ziegler, A.; de la Fuente, J.M.; Mitchell, S.G.; Streb, C. Polyoxometalate-ionic liquids (POM-ILs) as anticorrosion and antibacterial coatings for natural stones. Angew. Chem. Int. Ed. 2018, 57, 14926–14931. [Google Scholar] [CrossRef] [Green Version]
- Murru, A.; Freire-Lista, D.M.; Fort, R.; Varas-Muriel, M.J.; Meloni, P. Evaluation of post-thermal shock effects in carrara marble and santa caterina di pittinuri limestone. Constr. Build. Mater. 2018, 186, 1200–1211. [Google Scholar] [CrossRef]
- Pötzl, C.; Dohrmann, R.; Siegesmund, S. Clay swelling mechanism in tuff stones: An example of the Hilbersdorf Tuff from Chemnitz, Germany. Environ. Earth Sci. 2018, 77, 188. [Google Scholar] [CrossRef]
- Pötzl, C.; Siegesmund, S.; Dohrmann, R.; Koning, J.M.; Wedekind, W. Deterioration of volcanic tuff rocks from Armenia: Constraints on salt crystallization and hydric expansion. Environ. Earth Sci. 2018, 77, 660. [Google Scholar] [CrossRef]
- Rembiś, M.; Dubiniewicz, A. Zmiany mikrostrukturalne w płytach skał magmowych poddanych termicznej obróbce metodą płomieniowania. Przegląd Geol. 2018, 66, 450–456. [Google Scholar] [CrossRef]
- Sato, M.; Hattanji, T. A laboratory experiment on salt weathering by humidity change: Salt damage induced by deliquescence and hydration. Prog. Earth Planet. Sci. 2018, 5, 84. [Google Scholar] [CrossRef]
- Scrivano, S.; Gaggero, L.; Gisbert Aguilar, J. Micro-porosity and minero-petrographic features influences on decay: Experimental data from four dimension stones. Constr. Build. Mater. 2018, 173, 342–349. [Google Scholar] [CrossRef]
- Siegesmund, S.; Sousa, L.; Knell, C. Thermal expansion of granitoids. Environ. Earth Sci. 2018, 77, 41. [Google Scholar] [CrossRef]
- Sousa, L.; Siegesmund, S.; Wedekind, W. Salt weathering in granitoids: An overview on the controlling factors. Environ. Earth Sci. 2018, 77, 502. [Google Scholar] [CrossRef]
- Stück, H.L.; Platz, T.; Müller, A.; Siegesmund, S. Natural stones of the Saale—Unstrut Region (Germany): Petrography and weathering phenomena. Environ. Earth Sci. 2018, 77, 300. [Google Scholar] [CrossRef]
- Suzuki, A.; Vettori, S.; Giorgi, S.; Carretti, E.; Di Benedetto, F.; Dei, L.; Benvenuti, M.; Moretti, S.; Pecchioni, E.; Costagliola, P. Laboratory study of the sulfation of carbonate stones through SWIR hyperspectral investigation. J. Cult. Herit. 2018, 32, 30–37. [Google Scholar] [CrossRef]
- Tiennot, M.; Mertz, J.-D.; Bourgès, A. Sensitivity of kersantite toughness to moisture: Influence of the phyllosilicates. Environ. Earth Sci. 2018, 77, 483. [Google Scholar] [CrossRef]
- Wedekind, W.; Gross, C.J.; Hoffmann, A.; Siegesmund, S. Damage phenomenon and petrophysical properties of sandstones at the Phnom Bakheng Temple (Angkor, Cambodia): First investigations and possible conservation measures. Environ. Earth Sci. 2018, 77, 735. [Google Scholar] [CrossRef]
- Yagiz, S. The effect of pH of the testing liquid on the degradability of carbonate rocks. Geotech. Geol. Eng. 2018, 36, 2351–2363. [Google Scholar] [CrossRef]
- Zalooli, A.; Freire-Lista, D.M.; Khamehchiyan, M.; Nikudel, M.R.; Fort, R.; Ghasemi, S. Ghaleh-khargushi rhyodacite and Gorid andesite from Iran: Characterization, uses, and durability. Environ. Earth Sci. 2018, 77, 315. [Google Scholar] [CrossRef]
- Zarzuela, R.; Moreno-Garrido, I.; Blasco, J.; Gil, M.L.A.; Mosquera, M.J. Evaluation of the effectiveness of CuONPs/SiO2-based treatments for building stones against the growth of phototrophic microorganisms. Constr. Build. Mater. 2018, 187, 501–509. [Google Scholar] [CrossRef]
- Zhou, Z.; Cai, X.; Ma, D.; Chen, L.; Wang, S.; Tan, L. Dynamic tensile properties of sandstone subjected to wetting and drying cycles. Constr. Build. Mater. 2018, 182, 215–232. [Google Scholar] [CrossRef]
- Çelik, M.Y.; Aygün, A. The effect of salt crystallization on degradation of volcanic building stones by sodium sulfates and sodium chlorides. Bull. Eng. Geol. Environ. 2019, 78, 3509–3529. [Google Scholar] [CrossRef]
- Dursun, F.; Topal, T. Durability assessment of the basalts used in the Diyarbakır City Walls, Turkey. Environ. Earth Sci. 2019, 78, 456. [Google Scholar] [CrossRef]
- ElBaghdady, K.Z.; Tolba, S.T.; Houssien, S.S. Biogenic deterioration of Egyptian limestone monuments: Treatment and conservation. J. Cult. Herit. 2019, 38, 118–125. [Google Scholar] [CrossRef]
- Farkas, O.; Török, Á. Effect of exhaust gas on natural stone tablets, a laboratory experiment. Period. Polytech. Civil. Eng. 2019, 63, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Fogue-Djombou, Y.I.; Corn, S.; Clerc, L.; Salze, D.; Garcia-Diaz, E. Freeze-thaw resistance of limestone roofing tiles assessed through impulse vibration monitoring and finite element modeling in relation to their microstructure. Constr. Build. Mater. 2019, 205, 656–667. [Google Scholar] [CrossRef]
- Geng, H.; Zhang, S.; Zhi, J.; Zhang, R.; Ren, J.; Ro, C.-U. Acid solution decreases the compressional wave velocity of sandstone from the Yungang Grottoes, Datong, China. Herit. Sci. 2019, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Germinario, L.; Török, Á. Variability of technical properties and durability in volcanic tuffs from the same quarry region—Examples from Northern Hungary. Eng. Geol. 2019, 262, 105319. [Google Scholar] [CrossRef]
- Korobiichuk, V.; Shlapak, V.; Kryvoruchko, A.; Sobolevskyi, R.; Zuievska, N. Analysis of change in the decorative properties of granites under thermal exposure. East. Eur. J. Adv. Technol. 2019, 2, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Martínez, J.; Benavente, D.; Pérez-Huerta, A.; Cueto, N.; García-del-Cura, M.A. Changes on the surface properties of foliated marbles at different cutting orientations. Constr. Build. Mater. 2019, 222, 493–499. [Google Scholar] [CrossRef]
- Montiel-Zafra, V.; Canadas-Quesada, F.; Campos-Suñol, M.J.; Vera-Candeas, P.; Ruiz-Reyes, N. Monitoring the internal quality of ornamental stone using impact-echo testing. Appl. Acoust. 2019, 155, 180–189. [Google Scholar] [CrossRef]
- Nasri, F.; Boumezbeur, A.; Benavente, D. Influence of the petrophysical and durability properties of carbonate rocks on the deterioration of historic constructions in Tebessa (northeastern Algeria). Bull. Eng. Geol. Environ. 2019, 78, 3969–3981. [Google Scholar] [CrossRef]
- Navarro, R.; Catarino, L.; Pereira, D.; Gil, F.P. de S.C. Effect of UV radiation on chromatic parameters in serpentinites used as dimension stones. Bull. Eng. Geol. Environ. 2019, 78, 5345–5355. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Otero, J.; Alonso, P.; Barberà, X.M. Nanolime- and nanosilica-based consolidants applied on heated granite and limestone: Effectiveness and durability. Constr. Build. Mater. 2019, 201, 852–870. [Google Scholar] [CrossRef]
- Scrivano, S.; Gaggero, L.; Gisbert Aguilar, J. An experimental investigation of the effects of grain size and pore network on the durability of Vicenza stone. Rock Mech. Rock Eng. 2019, 52, 2935–2948. [Google Scholar] [CrossRef]
- Sun, Q.; Dong, Z.; Jia, H. Decay of sandstone subjected to a combined action of repeated freezing–thawing and salt crystallization. Bull. Eng. Geol. Environ. 2019, 78, 5951–5964. [Google Scholar] [CrossRef]
- Thomachot-Schneider, C.; Vázquez, P.; Gommeaux, M.; Lelarge, N.; Conreux, A.; Drothière, X.; Mouhoubi, K.; Bodnar, J.-L. Thermal response of building stones contaminated with salts. Constr. Build. Mater. 2019, 226, 331–344. [Google Scholar] [CrossRef]
- Tiennot, M.; Mertz, J.-D.; Bourgès, A. Influence of Clay Minerals nature on the hydromechanical and fracture behaviour of stones. Rock Mech. Rock Eng. 2019, 52, 1599–1611. [Google Scholar] [CrossRef] [Green Version]
- Torabi-Kaveh, M.; Heidari, M.; Mohseni, H.; Ménendez, B. Role of petrography in durability of limestone used in construction of Persepolis complex subjected to artificial accelerated ageing tests. Environ. Earth Sci. 2019, 78, 297. [Google Scholar] [CrossRef]
- Török, Á.; Szemerey-Kiss, B. Freeze-thaw durability of repair mortars and porous limestone: Compatibility issues. Prog. Earth Planet. Sci. 2019, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Uğur, İ.; Toklu, H.Ö. Effect of multi-cycle freeze-thaw tests on the physico-mechanical and thermal properties of some highly porous natural stones. Bull. Eng. Geol. Environ. 2019. [CrossRef]
- Zalooli, A.; Khamehchiyan, M.; Nikudel, M.R. Durability assessment of Gerdoi and red travertines from Azarshahr, East Azerbaijan province, Iran. Bull. Eng. Geol. Environ. 2019, 78, 1683–1695. [Google Scholar] [CrossRef]
- Singh, B.; Goel, R.K. Rock Mass Classification: A Practical Approach in Civil Engineering, 1st ed.; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 1999; ISBN 9780080430133. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, C.; Figueiredo, C.; Sanjurjo-Sánchez, J. Rock Features and Alteration of Stone Materials Used for the Built Environment: A Review of Recent Publications on Ageing Tests. Geosciences 2020, 10, 91. https://doi.org/10.3390/geosciences10030091
Alves C, Figueiredo C, Sanjurjo-Sánchez J. Rock Features and Alteration of Stone Materials Used for the Built Environment: A Review of Recent Publications on Ageing Tests. Geosciences. 2020; 10(3):91. https://doi.org/10.3390/geosciences10030091
Chicago/Turabian StyleAlves, Carlos, Carlos Figueiredo, and Jorge Sanjurjo-Sánchez. 2020. "Rock Features and Alteration of Stone Materials Used for the Built Environment: A Review of Recent Publications on Ageing Tests" Geosciences 10, no. 3: 91. https://doi.org/10.3390/geosciences10030091
APA StyleAlves, C., Figueiredo, C., & Sanjurjo-Sánchez, J. (2020). Rock Features and Alteration of Stone Materials Used for the Built Environment: A Review of Recent Publications on Ageing Tests. Geosciences, 10(3), 91. https://doi.org/10.3390/geosciences10030091