Pressure Controlled Permeability in a Conduit Filled with Fractured Hydrothermal Breccia Reconstructed from Ballistics from Whakaari (White Island), New Zealand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Preparation
2.2. SEM and XRD Preparation and Methods
2.3. Physical Laboratory Measurements
2.4. Mechanical Laboratory Measurements
3. Results
3.1. Lithologies
3.2. Porosity and Permeability
3.3. Results Summary
4. Discussion
5. Implications for Fluid Flow Monitoring and Eruption
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gardner, C.A.; White, R.A. Seismicity, gas emission and deformation from 18 July to 25 September 1995 during the initial phreatic phase of the eruption of Soufriere Hills Volcano, Montserrat. Geol. Soc. Lond. Mem. 2002, 21, 567–581. [Google Scholar] [CrossRef]
- Norton, D.L.; Cathles, L.M. Breccia pipes, products of exsolved vapor from magmas. Econ. Geol. 1973, 68, 540–546. [Google Scholar] [CrossRef]
- Heap, M.J.; Troll, V.R.; Kushnir, A.R.; Gilg, H.A.; Collinson, A.S.; Deegan, F.M.; Darmawan, H.; Seraphine, N.; Neuberg, J.; Walter, T.R. Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schauroth, J.; Wadsworth, F.B.; Kennedy, B.; von Aulock, F.W.; Lavallée, Y.; Damby, D.E.; Dingwell, D.B. Conduit margin heating and deformation during the AD 1886 basaltic Plinian eruption at Tarawera volcano, New Zealand. Bull. Volcanol. 2016, 78, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stasiuk, M.V.; Barclay, J.; Carroll, M.R.; Jaupart, C.; Ratté, J.C.; Sparks, R.S.J.; Tait, S.R. Degassing during magma ascent in the Mule Creek vent (USA). Bull. Volcanol. 1996, 58, 117–130. [Google Scholar] [CrossRef]
- Tuffen, H.; Dingwell, D. Fault textures in volcanic conduits: Evidence for seismic trigger mechanisms during silicic eruptions. Bull. Volcanol. 2005, 67, 370–387. [Google Scholar] [CrossRef]
- Wadsworth, F.B.; Kennedy, B.M.; Branney, M.J.; von Aulock, F.W.; Lavallée, Y.; Menendez, A. Exhumed conduit records magma ascent and drain-back during a Strombolian eruption at Tongariro volcano, New Zealand. Bull. Volcanol. 2015, 77, 71. [Google Scholar] [CrossRef] [Green Version]
- White, J.D.; Ross, P.S. Maar-diatreme volcanoes: A review. J. Volcanol. Geotherm. Res. 2011, 201, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, N.S.; White, J.D.L.; Kjarsgaard, B.A. Unbedded diatreme deposits reveal maar-diatreme-forming eruptive processes: Standing Rocks West, Hopi Buttes, Navajo Nation, USA. Bull. Volcanol. 2013, 75, 739. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Li, S.R.; Santosh, M.; Luo, J.Y.; Li, C.L.; Song, J.Y.; Lu, J.; Liang, X. The genesis and gold mineralization of the crypto-explosive breccia pipe in the Yixingzhai gold region, central North China Craton. Geol. J. 2019. [Google Scholar] [CrossRef]
- Omosanya, K.O.; Eruteya, O.E.; Siregar, E.S.; Zieba, K.J.; Johansen, S.E.; Alves, T.M.; Waldmann, N.D. Three-dimensional (3-D) seismic imaging of conduits and radial faults associated with hydrothermal vent complexes (Vøring Basin, Offshore Norway). Mar. Geol. 2018, 399, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Heap, M.J.; Kennedy, B.M.; Pernin, N.; Jacquemard, L.; Baud, P.; Farquharson, J.I.; Scheu, B.; Lavallée, Y.; Gilg, H.A.; Letham-Brake, M.; et al. Mechanical behaviour and failure modes in the Whakaari (White Island volcano) hydrothermal system, New Zealand. J. Volcanol. Geotherm. Res. 2015, 295, 26–42. [Google Scholar] [CrossRef]
- Heap, M.J.; Kennedy, B.M.; Farquharson, J.I.; Ashworth, J.; Mayer, K.; Letham-Brake, M.; Reuschlé, T.; Gilg, H.A.; Scheu, B.; Lavallée, Y.; et al. A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand). J. Volcanol. Geotherm. Res. 2017, 332, 88–108. [Google Scholar] [CrossRef]
- Mayer, K.; Scheu, B.; Gilg, H.A.; Heap, M.J.; Kennedy, B.M.; Lavallée, Y.; Letham-Brake, M.; Dingwell, D.B. Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano). J. Volcanol. Geotherm. Res. 2015, 302, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, B.; Spieler, O.; Scheu, B.; Kueppers, U.; Taddeucci, J.; Dingwell, D.B. Conduit implosion during Vulcanian eruptions. Geology 2005, 33, 581–584. [Google Scholar] [CrossRef]
- Kilgour, G.N.; Gates, S.; Kennedy, B.; Farquhar, A.; McSporran, A.; Asher, C. Phreatic eruption dynamics derived from deposit analysis: A case study from a small, phreatic eruption from Whakāri/White Island, New Zealand. Earth Planets Space 2019, 71, 36. [Google Scholar] [CrossRef]
- Houghton, B.F.; Nairn, I.A. The 1976–1982 Strombolian and phreatomagmatic eruptions of White Island, New Zealand: Eruptive and depositional mechanisms at a ‘wet’ volcano. Bull. Volcanol. 1991, 54, 25–49. [Google Scholar] [CrossRef]
- Chardot, L.; Jolly, A.D.; Kennedy, B.M.; Fournier, N.; Sherburn, S. Using volcanic tremor for eruption forecasting at White Island volcano (Whakaari), New Zealand. J. Volcanol. Geotherm. Res. 2015, 302, 11–23. [Google Scholar] [CrossRef]
- Jolly, A.; Lokmer, I.; Christenson, B.; Thun, J. Relating gas ascent to eruption triggering for the April 27, 2016, White Island (Whakaari), New Zealand eruption sequence. Earth Planets Space 2018, 70, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fournier, N.; Chardot, L. Understanding volcano hydrothermal unrest from geodetic observations: Insights from numerical modeling and application to White Island volcano, New Zealand. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Christenson, B.W.; White, S.; Britten, K.; Scott, B.J. Hydrological evolution and chemical structure of a hyper-acidic spring-lake system on Whakaari/White Island, NZ. J. Volcanol. Geotherm. Res. 2017, 346, 180–211. [Google Scholar] [CrossRef]
- Edwards, M.J.; Kennedy, B.M.; Jolly, A.D.; Scheu, B.; Jousset, P. Evolution of a small hydrothermal eruption episode through a mud pool of varying depth and rheology, White Island, NZ. Bull. Volcanol. 2017, 79, 16. [Google Scholar] [CrossRef]
- Jolly, A.D.; Chardot, L.; Neuberg, J.; Fournier, N.; Scott, B.J.; Sherburn, S. High impact mass drops from helicopter: A new active seismic source method applied in an active volcanic setting. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Montanaro, C.; Cronin, S.; Scheu, B.; Kennedy, B.; Scott, B. Complex crater fields formed by steam-driven eruptions: Lake Okaro, New Zealand. GSA Bull. 2020. [Google Scholar] [CrossRef]
- Chouet, B.A. Long-period volcano seismicity: Its source and use in eruption forecasting. Nature 1996, 380, 309–316. [Google Scholar] [CrossRef] [Green Version]
- McNutt, S.R. Seismic monitoring and eruption forecasting of volcanoes: A review of the state-of-the-art and case histories. In Monitoring and Mitigation of Volcano Hazards; Springer: Berlin/Heidelberg, Germany, 1996; pp. 99–146. [Google Scholar]
- Sparks, R.S.J. Forecasting volcanic eruptions. Earth Planet. Sci. Lett. 2003, 210, 1–15. [Google Scholar] [CrossRef]
- Brenguier, F.; Shapiro, N.M.; Campillo, M.; Ferrazzini, V.; Duputel, Z.; Coutant, O.; Nercessian, A. Towards forecasting volcanic eruptions using seismic noise. Nat. Geosci. 2008, 1, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.F.; Greenhough, J.; Heap, M.J.; Main, I.G. Challenges for forecasting based on accelerating rates of earthquakes at volcanoes and laboratory analogues. Geophys. J. Int. 2011, 185, 718–723. [Google Scholar] [CrossRef] [Green Version]
- Bean, C.J.; De Barros, L.; Lokmer, I.; Métaxian, J.P.; O’Brien, G.; Murphy, S. Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes. Nat. Geosci. 2014, 7, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.; Adam, L.; Sarout, J.; van Wijk, K.; Kennedy, B.; Dautriat, J. The relation between viscosity and acoustic emissions as a laboratory analogue for volcano seismicity. Geology 2019, 47, 499–503. [Google Scholar] [CrossRef]
- Hamling, I.J. Crater Lake controls on volcano stability: Insights from White Island, New Zealand. Geophys. Res. Lett. 2017, 44, 11–311. [Google Scholar] [CrossRef]
- Todesco, M.; Rinaldi, A.P.; Bonafede, M. Modeling of unrest signals in heterogeneous hydrothermal systems. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Pola, A.; Crosta, G.; Fusi, N.; Barberini, V.; Norini, G. Influence of alteration on physical properties of volcanic rocks. Tectonophysics 2012, 566, 67–86. [Google Scholar] [CrossRef]
- Sruoga, P.; Rubinstein, N. Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquén basins, Argentina. AAPG Bull. 2007, 91, 115–129. [Google Scholar] [CrossRef]
- Wyering, L.D.; Villeneuve, M.C.; Wallis, I.C.; Siratovich, P.A.; Kennedy, B.M.; Gravley, D.M.; Cant, J.L. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 2014, 288, 76–93. [Google Scholar] [CrossRef]
- Mordensky, S.P.; Villeneuve, M.C.; Kennedy, B.M.; Heap, M.J.; Gravley, D.M.; Farquharson, J.I.; Reuschlé, T. Physical and mechanical property relationships of a shallow intrusion and volcanic host rock, Pinnacle Ridge, Mt. Ruapehu, New Zealand. J. Volcanol. Geotherm. Res. 2018, 359, 18–20. [Google Scholar] [CrossRef]
- Mordensky, S.P.; Heap, M.J.; Kennedy, B.M.; Gilg, H.A.; Villeneuve, M.C.; Farquharson, J.I.; Gravley, D.M. Influence of alteration on the mechanical behaviour and failure mode of andesite: Implications for shallow seismicity and volcano monitoring. Bull. Volcanol. 2019, 81, 44. [Google Scholar] [CrossRef]
- Heap, M.J.; Gravley, D.M.; Kennedy, B.M.; Gilg, H.A.; Bertolett, E.; Barker, S.L. Quantifying the role of hydrothermal alteration in creating geothermal and epithermal mineral resources: The Ohakuri ignimbrite (Taupō Volcanic Zone, New Zealand). J. Volcanol. Geotherm. Res. 2020, 390, 106703. [Google Scholar] [CrossRef]
- Cant, J.L.; Siratovich, P.A.; Cole, J.W.; Villeneuve, M.C.; Kennedy, B.M. Matrix permeability of reservoir rocks, Ngatamariki geothermal field, Taupo Volcanic Zone, New Zealand. Geotherm. Energy 2018, 6, 2. [Google Scholar] [CrossRef]
- Farquharson, J.I.; Wild, B.; Kushnir, A.R.; Heap, M.J.; Baud, P.; Kennedy, B. Acid-induced dissolution of andesite: Evolution of permeability and strength. J. Geophys. Res. Solid Earth 2019, 124, 257–273. [Google Scholar] [CrossRef] [Green Version]
- Heap, M.J.; Farquharson, J.I.; Baud, P.; Lavallée, Y.; Reuschlé, T. Fracture and compaction of andesite in a volcanic edifice. Bull. Volcanol. 2015, 77, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siratovich, P.A.; Heap, M.J.; Villeneuve, M.C.; Cole, J.W.; Kennedy, B.M.; Davidson, J.; Reuschlé, T. Mechanical behaviour of the Rotokawa Andesites (New Zealand): Insight into permeability evolution and stress-induced behaviour in an actively utilised geothermal reservoir. Geothermics 2016, 64, 163–179. [Google Scholar] [CrossRef]
- Ogata, K.; Senger, K.; Braathen, A.; Tveranger, J. Fracture corridors as seal-bypass systems in siliciclastic reservoir-cap rock successions: Field-based insights from the Jurassic Entrada Formation (SE Utah, USA). J. Struct. Geol. 2014, 66, 162–187. [Google Scholar] [CrossRef]
- von Aulock, F.W.; Nichols, A.R.L.; Kennedy, B.M.; Oze, C. Timescales of texture development in a cooling lava dome. Geochim. Cosmochim. Acta 2013, 114, 72–80. [Google Scholar] [CrossRef]
- Saubin, E.; Kennedy, B.; Tuffen, H.; Villeneuve, M.; Davidson, J.; Burchardt, S. Comparative field study of shallow rhyolite intrusions in Iceland: Emplacement mechanisms and impact on country rocks. J. Volcanol. Geotherm. Res. 2019, 388, 106691. [Google Scholar] [CrossRef] [Green Version]
- Siratovich, P.; Villeneuve, M.; Cole, J.; Kennedy, B.; Bégué, F. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs. Int. J. Rock. Mech. Min. 2015, 80, 265–280. [Google Scholar] [CrossRef]
- Mordensky, S.; Kennedy, B.; Villeneuve, M.; Lavallée, Y.; Reichow, M.; Wallace, P.; Siratovich, P.; Gravley, D. Increasing the Permeability of Hydrothermally Altered Andesite by Transitory Heating. Geochem. Geophys. Geosyst. 2019, 20, 5251–5269. [Google Scholar] [CrossRef] [Green Version]
- Heap, M.J.; Kennedy, B.M. Exploring the scale-dependent permeability of fractured andesite. Earth Planet. Sci. Lett. 2016, 447, 139–150. [Google Scholar] [CrossRef]
- Lamur, A.; Kendrick, J.E.; Eggertsson, G.H.; Wall, R.J.; Ashworth, J.D.; Lavallée, Y. The permeability of fractured rocks in pressurised volcanic and geothermal systems. Sci. Rep. 2017, 7, 6173. [Google Scholar] [CrossRef] [Green Version]
- Eggertsson, G.H.; Lavallée, Y.; Kendrick, J.E.; Markússon, S.H. Improving fluid flow in geothermal reservoirs by thermal and mechanical stimulation: The case of Krafla volcano, Iceland. J. Volcanol. Geotherm. Res. 2018, 391. [Google Scholar] [CrossRef]
- Mordensky, S.P.; Villeneuve, M.C.; Farquharson, J.I.; Kennedy, B.M.; Heap, M.J.; Gravley, D.M. Rock mass properties and edifice strength data from Pinnacle Ridge, Mt. Ruapehu, New Zealand. J. Volcanol. Geotherm. Res. 2018, 367, 46–62. [Google Scholar] [CrossRef]
- Farquhar, A. Ballistic Analysis Inferring Subsurface Hydrothermal Alteration and Mineralogical Seal Control on Eruptions at Whakaari Volcano, New Zealand. Colorado College: Colorado Springs, CO, USA, 2018; unpublished. [Google Scholar]
- Deligne, N.I.; Jolly, G.E.; Taig, T.; Webb, T.H. Evaluating life-safety risk for fieldwork on active volcanoes: The volcano life risk estimator (VoLREst), a volcano observatory’s decision-support tool. J. Appl. Volcanol. 2018, 7, 7. [Google Scholar] [CrossRef]
- Heap, M.J.; Kushnir, A.R.; Gilg, H.A.; Wadsworth, F.B.; Reuschlé, T.; Baud, P. Microstructural and petrophysical properties of the Permo-Triassic sandstones (Buntsandstein) from the Soultz-sous-Forêts geothermal site (France). Geotherm. Energy 2017, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.W.; Thordarson, T.; Burt, R.M. Magma origin and evolution of White Island (Whakaari) volcano, Bay of plenty, New Zealand. J. Pet. 2000, 41, 867–895. [Google Scholar] [CrossRef]
- Farquharson, J.; Heap, M.J.; Varley, N.R.; Baud, P.; Reuschlé, T. Permeability and porosity relationships of edifice-forming andesites: A combined field and laboratory study. J. Volcanol. Geotherm. Res. 2015, 297, 52–68. [Google Scholar] [CrossRef]
- Wadsworth, F.B.; Vasseur, J.; Scheu, B.; Kendrick, J.E.; Lavallée, Y.; Dingwell, D.B. Universal scaling of fluid permeability during volcanic welding and sediment diagenesis. Geology 2016, 44, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Christenson, B.W.; Kennnedy, B.M.; Reyes, A.G.; Farquahar, A.; Heap, M.J.; Henley, R.W. Permeability reduction and other processes leading to phreatic eruptions from wet volcanic systems: Insights from the 27 April 2016 eruption from White Island, New Zealand. Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
- Vinciguerra, S.; Trovato, C.; Meredith, P.G.; Benson, P.M. Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts. Int. J. Rock Mech. Min. Sci. 2005, 42, 900–910. [Google Scholar] [CrossRef] [Green Version]
- Nara, Y.; Meredith, P.G.; Yoneda, T.; Kaneko, K. Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure. Tectonophysics 2011, 503, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Al-Harthi, A.A.; Al-Amri, R.M.; Shehata, W.M. The porosity and engineering properties of vesicular basalt in Saudi Arabia. Eng. Geol. 1999, 54, 313–320. [Google Scholar] [CrossRef]
- Heap, M.J.; Xu, T.; Chen, C.F. The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma. Bull. Volcanol. 2014, 76, 856. [Google Scholar] [CrossRef]
- Schaefer, L.N.; Kendrick, J.E.; Oommen, T.; Lavallée, Y.; Chigna, G. Geomechanical rock properties of a basaltic volcano. Front. Earth Sci. 2015, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Kushnir, A.R.; Martel, C.; Bourdier, J.L.; Heap, M.J.; Reuschlé, T.; Erdmann, S.; Komorowski, J.C.; Cholik, N. Probing permeability and microstructure: Unravelling the role of a low-permeability dome on the explosivity of Merapi (Indonesia). J. Volcanol. Geotherm. Res. 2016, 316, 56–71. [Google Scholar] [CrossRef] [Green Version]
- Bourbie, T.; Zinszner, B. Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. J. Geophys. Res. Solid Earth 1985, 90, 11524–11532. [Google Scholar] [CrossRef]
- Darot, M.; Guéguen, Y.; Baratin, M.L. Permeability of thermally cracked granite. Geophys. Res. Lett. 1992, 19, 869–872. [Google Scholar] [CrossRef]
- Kueppers, U.; Scheu, B.; Spieler, O.; Dingwell, D.B. Fragmentation efficiency of explosive volcanic eruptions: A study of experimentally generated pyroclasts. J. Volcanol. Geotherm. Res. 2006, 153, 125–135. [Google Scholar] [CrossRef]
- Schipper, C.I.; Mandon, C.; Maksimenko, A.; Castro, J.M.; Conway, C.E.; Hauer, P.; Kirilova, M.; Kilgour, G. Vapor-phase cristobalite as a durable indicator of magmatic pore structure and halogen degassing: An example from White Island volcano (New Zealand). Bull. Volcanol. 2017, 79, 74. [Google Scholar] [CrossRef]
- Goto, Y.; Nakada, S.; Kurokawa, M.; Shimano, T.; Sugimoto, T.; Sakuma, S.; Hoshizumi, H.; Yoshimoto, M.; Uto, K. Character and origin of lithofacies in the conduit of Unzen volcano, Japan. J. Volcanol. Geotherm. Res. 2008, 175, 45–59. [Google Scholar] [CrossRef]
- Bloomberg, S.; Rissmann, C.; Mazot, A.; Oze, C.; Horton, T.; Gravley, D.; Kennedy, B.; Werner, C.; Christenson, B.; Pawson, J. Soil Gas Flux Exploration at the Rotokawa Geothermal Field and White Island, New Zealand. In Proceedings of the Thirty Sixth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 30 January–1 February 2012; Volume 30. [Google Scholar]
- Spieler, O.; Kennedy, B.; Kueppers, U.; Dingwell, D.B.; Scheu, B.; Taddeucci, J. The fragmentation threshold of pyroclastic rocks. Earth Planet. Sci. Lett. 2004, 226, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Caudron, C.; Taisne, B.; Neuberg, J.; Jolly, A.D.; Christenson, B.; Lecocq, T.; Syahbana, D.; Suantika, G. Anatomy of phreatic eruptions. Earth Planets Space 2018, 70, 168. [Google Scholar] [CrossRef]
Sample Type and Numbers | XRD Peaks Identified |
---|---|
Unaltered Lava (n = 3), unaltered portions from samples 1-2, 2-2, 2-4 | Labradorite, Anorthoclase, Anhydrite, Alunite, Pyrite, Cristobalite, Zaherite * |
Altered Lava (n = 4) altered portions from samples 2-1, 2-4, 3-2, 161-8, | Albite, Opal Anhydrite Alunite Cristobalite, Zaherite *, Gyrolite * |
Altered Ash Tuff (n = 5) 3-3, 1-1, 3-1, 3-4, 3-7 | Cristobalite Alunite, Tridymite Rectorite *, Montmorillonite *, |
Hydrothermal Breccia (n = 5) 2615-4, 2-3, 163-2b, 161-22, 3-5 Surge matrix | Alunite, Anhydrite, Cristobalite, Pyrite, Zaherite *, Gyrolite * Cristobalite, Labrodorite |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kennedy, B.M.; Farquhar, A.; Hilderman, R.; Villeneuve, M.C.; Heap, M.J.; Mordensky, S.; Kilgour, G.; Jolly, A.; Christenson, B.; Reuschlé, T. Pressure Controlled Permeability in a Conduit Filled with Fractured Hydrothermal Breccia Reconstructed from Ballistics from Whakaari (White Island), New Zealand. Geosciences 2020, 10, 138. https://doi.org/10.3390/geosciences10040138
Kennedy BM, Farquhar A, Hilderman R, Villeneuve MC, Heap MJ, Mordensky S, Kilgour G, Jolly A, Christenson B, Reuschlé T. Pressure Controlled Permeability in a Conduit Filled with Fractured Hydrothermal Breccia Reconstructed from Ballistics from Whakaari (White Island), New Zealand. Geosciences. 2020; 10(4):138. https://doi.org/10.3390/geosciences10040138
Chicago/Turabian StyleKennedy, Ben M., Aaron Farquhar, Robin Hilderman, Marlène C. Villeneuve, Michael J. Heap, Stan Mordensky, Geoffrey Kilgour, Art. Jolly, Bruce Christenson, and Thierry Reuschlé. 2020. "Pressure Controlled Permeability in a Conduit Filled with Fractured Hydrothermal Breccia Reconstructed from Ballistics from Whakaari (White Island), New Zealand" Geosciences 10, no. 4: 138. https://doi.org/10.3390/geosciences10040138
APA StyleKennedy, B. M., Farquhar, A., Hilderman, R., Villeneuve, M. C., Heap, M. J., Mordensky, S., Kilgour, G., Jolly, A., Christenson, B., & Reuschlé, T. (2020). Pressure Controlled Permeability in a Conduit Filled with Fractured Hydrothermal Breccia Reconstructed from Ballistics from Whakaari (White Island), New Zealand. Geosciences, 10(4), 138. https://doi.org/10.3390/geosciences10040138