Quaternary Thrusting in the Central Oman Mountains—Novel Observations and Causes: Insights from Optical Stimulate Luminescence Dating and Kinematic Fault Analyses
Abstract
:1. Introduction
2. Geological Setting
3. Methods
3.1. Structural Measurements
3.2. Sampling and OSL-Dating of Conglomerate from Faulted Sediments
3.2.1. Sampling for Dating
3.2.2. Optical-Stimulated Luminescence (OSL) Dating of Quartz Grains from Fault-Related Sediments
4. Results
4.1. Alluvial Fan Deposits
4.2. Structural Analysis
4.3. OSL Dating
5. Discussion
5.1. Climatic Records and Quaternary Deposits
5.2. Structural Data and Tectonic Evolution
5.2.1. Set-1-Thrusts
5.2.2. Set-2-Thrusts
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moraetis, D.; Mattern, F.; Scharf, A.; Frijia, G.; Kusky, T.M.; Yuan, Y.; Hussain, I.L. Neogene to Quaternary uplift history along the passive margin of the northeastern Arabian Peninsula eastern Hajar Mountains, Oman. Quat. Res. 2018, 90, 418–434. [Google Scholar] [CrossRef]
- Mattern, F.; Moraetis, D.; Abbasi, I.; Al Shukaili, B.; Scharf, A.; Claereboudt, M.; Looker, E.; Al Haddabi, N.; Pracejus, B. Coastal dynamics of uplifted and emerged Late Pleistocene near-shore coral patch reefs at Fins (eastern coastal Oman, Gulf of Oman). J. Afr. Earth Sci. 2018, 138, 192–200. [Google Scholar] [CrossRef]
- Hoffmann, G.; Schneider, B.; Mechernich, S.; Falkenroth, M.; Dunai, T.; Preusser, F. Quaternary uplift along a passive continental margin (Oman, Indian Ocean). Geomorphology 2020, 350, 106870. [Google Scholar] [CrossRef]
- Rodgers, W.D.; Gunatilaka, A. Bajada formation by monsoonal erosion of a subaerial forebulge, Sultanate of Oman. Sediment. Geol. 2002, 154, 127–146. [Google Scholar] [CrossRef]
- El-Hussain, I.; Deif, A.; Al-Jabri, K.; Toksoz, N.; El-Hady, S.; Al-Hashmi, S. Probabilistic seismic hazard maps for the Sultanate of Oman. Nat. Hazards 2012, 64, 173–210. [Google Scholar] [CrossRef] [Green Version]
- Scharf, A.; Mattern, F.; Moraetis, D.; Callegari, I.; Weidle, C. Postobductional kinematic evolution and geomorphology of a major regional structure—The Semail Gap Fault Zone (Oman Mountains). Tectonics 2019, 38, 2756–2778. [Google Scholar] [CrossRef]
- Ermertz, A.M.; Kázmér, M.; Adolphs, S.K.; Falkenroth, M.; Hoffmann, G. Geoarchaeological Evidence for the Decline of the Medieval City of Qalhat, Oman. Open Quat. 2019, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kusky, T.; Robinson, C.; El-Baz, F. Tertiary-Quaternary faulting and uplift in the northern Oman Hajar Mountains. J. Geol. Soc. 2005, 162, 871–888. [Google Scholar] [CrossRef]
- Abrams, J.M.; Chadwick, H. Tectonic and climatic implications of alluvial fan sequences along the Batinah Coast, Oman. J. Geol. Soc. 1994, 151, 51–58. [Google Scholar] [CrossRef]
- Glennie, K.W.; Boeuf, M.G.A.; Hughes Clarke, M.W.; Moody-Stuart, M.; Pilaar, W.; Reinhardt, B.M. Geology of the Oman Mountains. Koninklijk Nederlands Geologisch en Mijnbouwkundig Genootschap 1974, 31, 423. [Google Scholar] [CrossRef]
- Hansman, R.J.; Ring, U.; Thomson, S.N.; den Brock, B.; Stübner, K. Late Eocene uplift of the Al Hajar Mountains, Oman, supported by stratigraphic and low-temperature thermochronology. Tectonics 2017, 36, 3081–3109. [Google Scholar] [CrossRef] [Green Version]
- Grobe, A.; von Hagke, C.; Littke, R.; Dunkl, I.; Wübbeler, F.; Muchez, P.; Urai, J.L. Tectono-thermal evolution of Oman’s Mesozoic passive continental margin under the obducting Semail Ophiolite: A case study of Jebel Akhdar, Oman. Solid Earth 2019, 10, 149–175. [Google Scholar] [CrossRef] [Green Version]
- Mattern, F.; Scharf, A. Postobductional extension along and within the Frontal Range of the Eastern Oman Mountains. J. Asian Earth Sci. 2018, 154, 369–385. [Google Scholar] [CrossRef]
- Scharf, A.; Mattern, F.; Al-Wardi, M.; Frijia, G.; Moraetis, D.; Pracejus, B.; Bauer, W.; Callegari, I. The geology and tectonics of the Jabal Akhdar and Saih Hatat domes (Oman Mountains). Geo. Soc. Lond. Mem. in press.
- Beurrier, M.; Béchennec, F.; Rabu, D.; Hutin, G. Geological Map of Rustaq, Sheet NF 40-03D, Scale 1:100,000, with Explanatory Notes: Directorate General of Minerals 1986; Oman Ministry of Petroleum and Minerals: Muscat, Oman, 1986.
- Béchennec, F.; Roger, J.; Le Métour, J.; Wyns, R. Geological Map of Seeb, Sheet NF 40-03, Scale 1:250,000, with Explanatory Notes: Directorate General of Minerals 1992; Oman Ministry of Petroleum and Minerals: Muscat, Oman, 1992.
- Searle, M.P.; Cooper, D.J.W. Structure of the Hawasina Window culmination, central Oman Mountains. Trans. R. Soc. Edinb. Earth Sci. 1986, 77, 143–156. [Google Scholar] [CrossRef]
- Ali, S.A.; Mohajjel, M.; Aswad, K.; Ismail, S.; Buckman, S.; Jones, B. Tectono-stratigraphy and general structure of the northwestern Zagros collision zone across the Iraq-Iran border. J. Environ. Earth Sci. 2014, 4, 92–110. [Google Scholar]
- Hoffmann, G.; Rupprechter, M.; Rahn, M.; Preusser, F. Fluvio-lacustrine deposits reveal precipitation pattern in SE Arabia during early MIS 3. Quatern. Int. 2015, 382, 145–153. [Google Scholar] [CrossRef]
- Blechschmidt, I.; Matter, A.; Preusser, F.; Rieke-Zapp, D. Monsoon triggered formation of Quaternary alluvial megafans in the interior of Oman. Geomorphology 2009, 110, 128–139. [Google Scholar] [CrossRef]
- Radies, F.; Preusser, F.; Matter, A.; Mange, M. Eustatic and climatic controls on the development of the Wahiba Sand Sea, Sultanate of Oman. Sedimentology 2004, 51, 1359–1385. [Google Scholar] [CrossRef]
- Preusser, F.; Radies, D.; Matter, A. 160,000-year record of dune development and atmospheric circulation in Southern Arabia. Science 2002, 226, 2018–2020. [Google Scholar] [CrossRef]
- Clar, E. Ein zweikreisiger Geologen- und Bergmannskompaß zur Messung von Flächen und Linearen (Mit Bemerkungen zu den feldgeologischen Messungsarten). Verh. Geol. Bundesanst. 1954, 4, 201–215. [Google Scholar]
- Petit, J.P. Criteria for the sense of movement on fault surfaces in brittle rocks. J. Struct. Geol. 1987, 9, 597–608. [Google Scholar] [CrossRef]
- Angelier, J. Fault slip analysis and paleostress reconstruction. In Continental Deformation; Hancock, P.L., Ed.; Pergamon Press: Oxford, UK, 1994; pp. 53–100. [Google Scholar]
- Murray, A.S.; Wintle, A.G. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Rad. Measur. 2003, 37, 377–381. [Google Scholar] [CrossRef]
- Wintle, A.G.; Murray, A.S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Rad. Measur. 2006, 41, 369–391. [Google Scholar] [CrossRef]
- Mejdahl, V.; Christiansen, H.H. Procedures used for luminescence dating of sediments. Boreas 1994, 13, 403–406. [Google Scholar] [CrossRef]
- Durcan, J.A.; Duller, G.A.T. The fast ratio: A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz. Rad. Measur. 2011, 46, 1065–1072. [Google Scholar] [CrossRef]
- Galbraith, R.F.; Roberts, R.G.; Laslett, G.M.; Yoshida, H.; Olley, J.M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia, part 1, Experimental design and statistical models. Archaeometry 1999, 41, 339–364. [Google Scholar] [CrossRef]
- Galbraith, R.F.; Roberts, R.G. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quat. Geochron. 2012, 11, 1–27. [Google Scholar] [CrossRef]
- Galbraith, R.; Green, P. Estimating the component ages in a finite mixture. Int. J. Radiat. Appl. Instrum. 1990, 17, 197–206. [Google Scholar]
- Prescott, J.R.; Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Rad. Measur. 1994, 23, 497–500. [Google Scholar] [CrossRef]
- Burns, S.J.; Fleitmann, D.; Matter, A.; Neff, U.; Mangini, A. Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology 2001, 29, 623–626. [Google Scholar] [CrossRef]
- Dorn, R.I. The role of climatic change in alluvial fan development. In Geomorphology of Desert Environments, 2nd ed.; Abrahams, A.D., Parsons, A.J., Eds.; Springer: New York, NY, USA, 2009; pp. 723–742. [Google Scholar]
- Liesicki, L.E.; Raymo, M.E. A Pliocene–Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 2005, 20, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Rivas, E.; Bons, P.D.; Koehn, D.; Urai, J.L.; Arndt, M.; Virgo, S.; Laurich, B.; Zeeb, C.; Stark, L.; Blum, P. The Jabal Akhdar Dome in the Oman Mountains: Evolution of a dynamic fracture system. Am. J. Sci. 2014, 314, 1104–1139. [Google Scholar] [CrossRef] [Green Version]
- Filbrandt, J.B.; Al-Dhahab, S.; Al-Habsy, A.; Harris, K.; Keating, J.; Al-Mahruqi, S.; Ozkaya, I.; Richard, P.D.; Robertson, T. Kinematic interpretation and structural evolution of North Oman, Block 6, since the Late Cretaceous and implications for timing of hydrocarbon migration into Cretaceous reservoirs. GeoArabia 2006, 11, 97–140. [Google Scholar]
- Hansman, R.J.; Ring, U. Jabal Hafit anticline (UAE and Oman) formed by décollement folding followed by trishear fault-propagation folding. J. Struct. Geol. 2018, 117, 168–185. [Google Scholar] [CrossRef]
- Hansman, R.J.; Albert, R.; Gerdes, A.; Ring, U. Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite. Geology 2018, 46, 207–210. [Google Scholar] [CrossRef] [Green Version]
Coordinates | Dip Direction and Dip Angle of the Plane | Slicken Line | Displacement | ||||||
---|---|---|---|---|---|---|---|---|---|
Degrees | Minutes | Seconds | Dip Direction | Dip Angle | Trend | Plunge | |||
QUMU-Fault1 | Lat | 23 | 27 | 41.6 | 034 | 32 | 075 | 30 | - |
Lon | 57 | 03 | 57.6 | ||||||
QUMU-Fault2 | Lat | 23 | 27 | 42.3 | 228 | 33 | 237 | 38 | - |
Lon | 57 | 04 | 4.4 | ||||||
QUMU-Fault3 | Lat | 23 | 27 | 34.9 | 214 | 38 | 210 | 35 | - |
Lon | 57 | 04 | 1.4 | ||||||
QUMU-Fault4 | Lat | Similar to fault 3 | 204 | 15 | 195 | 20 | - | ||
Lon | |||||||||
QUMU-Fault5 | Lat | 23 | 27 | 27.5 | 012 | 38 | - | - | |
Lon | 57 | 03 | 52.1 | ||||||
QUMU-Fault6 | Lat | 23 | 27 | 44.1 | 225 | 30 | - | Throw 1 m | |
Lon | 57 | 03 | 25.4 | ||||||
QUMU-Fault7 | Lat | Similar to fault 6 | 150 | 30 | - | ||||
Lon | |||||||||
QUMU-Fault8 | Lat | Similar to fault 6 | 295 | 30 | 295 | 31 | Throw 1.10 m | ||
Lon | |||||||||
QUMU-Fault9 | Lat | 23 | 27 | 33.5 | 300 | 10 | - | - | |
Lon | 57 | 05 | 1.9 | ||||||
QUMU-Fault10 | Lat | 23 | 27 | 34 | 134 | 23 | 143 | 26 | - |
Lon | 57 | 05 | 7.1 | ||||||
QUMU-Fault11 | Lat | Similar to fault 10 | 304 | 30 | - | Throw1.10 m | |||
Lon |
Field Number | Lab Number | Aliquots a | Grain Size (μm) | Central/ Minimum Age Model De (Gy) b | Over- Dispersion (%) c | U (ppm) d | Th (ppm) d | K (%) d | Cosmic Dose Rate (mGray/yr) | Dose Rate (mGray/yr) d | Central/ Minimum Model SAR age (ka) e |
---|---|---|---|---|---|---|---|---|---|---|---|
QUMU 5 | BG4778 | 34/30 | 63–100 | 111.47 ± 4.39 | 17 ± 3 | 0.80 ± 0.01 | 1.12 ± 0.01 | 0.24 ± 0.01 | 0.23 ± 0.023 | 0.70 ± 0.02 | 159 ± 7.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraetis, D.; Scharf, A.; Mattern, F.; Pavlopoulos, K.; Forman, S. Quaternary Thrusting in the Central Oman Mountains—Novel Observations and Causes: Insights from Optical Stimulate Luminescence Dating and Kinematic Fault Analyses. Geosciences 2020, 10, 166. https://doi.org/10.3390/geosciences10050166
Moraetis D, Scharf A, Mattern F, Pavlopoulos K, Forman S. Quaternary Thrusting in the Central Oman Mountains—Novel Observations and Causes: Insights from Optical Stimulate Luminescence Dating and Kinematic Fault Analyses. Geosciences. 2020; 10(5):166. https://doi.org/10.3390/geosciences10050166
Chicago/Turabian StyleMoraetis, Daniel, Andreas Scharf, Frank Mattern, Kosmas Pavlopoulos, and Steven Forman. 2020. "Quaternary Thrusting in the Central Oman Mountains—Novel Observations and Causes: Insights from Optical Stimulate Luminescence Dating and Kinematic Fault Analyses" Geosciences 10, no. 5: 166. https://doi.org/10.3390/geosciences10050166
APA StyleMoraetis, D., Scharf, A., Mattern, F., Pavlopoulos, K., & Forman, S. (2020). Quaternary Thrusting in the Central Oman Mountains—Novel Observations and Causes: Insights from Optical Stimulate Luminescence Dating and Kinematic Fault Analyses. Geosciences, 10(5), 166. https://doi.org/10.3390/geosciences10050166