Shallow Magmatic Hydrothermal Eruption in April 2018 on Ebinokogen Ioyama Volcano in Kirishima Volcano Group, Kyushu, Japan
Abstract
:1. Introduction
2. Geological Setting
3. Methods
3.1. Geothermal Observations
3.2. Geochemical Analyses
4. Events at Ebinokogen Ioyama Volcano
4.1. Stage-1: December 2013 to December 2015
4.2. Stage-2: December 2015 to January 2017
4.3. Stage-3: January 2017 to February 2018
4.4. Stage-4: February 2018 to December 2018
5. Results of Geochemical Analyses
6. Discussions
6.1. Relationship between Observed Geothermal Activities and Underlying Geothermal System
6.2. A Kick Sign before the April 2018 Eruption
6.3. Issues of Steam-Driven Eruptions for the Volcanic Disaster Prevention
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barberi, F.; Bertagnini, A.; Landi, P.; Principe, C. A review on phreatic eruptions and their precursors. J. Volcanol. Geotherm. Res. 1992, 52, 231–246. [Google Scholar] [CrossRef]
- Muffler, L.J.P.; White, D.E.; Truesdell, A.H. Hydrothermal explosion craters in Yellowstone National Park. Geol. Soc. Am. Bull. 1971, 82, 723–740. [Google Scholar] [CrossRef]
- Browne, P.R.L.; Lawless, J.V. Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere. Earth Sci. Rev. 2001, 52, 299–331. [Google Scholar] [CrossRef]
- Mordret, A.; Jolly, A.D.; Duputel, Z.; Fournier, N. Monitoring of phreatic eruptions using interferometry on retrieved cross-correlation function from ambient seismic noise: Results from Mt. Ruapehu, New Zealand. J. Volcanol. Geotherm. Res. 2010, 191, 46–59. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nakamura, Y.; Glicken, H. Pyroclastic density current from the 1888 phreatic eruption of Bandai volcano, NE Japan. J. Volcanol. Geotherm. Res. 1999, 90, 191–207. [Google Scholar] [CrossRef]
- Kitagawa, T. Bakuhatsu Saigai No Kaiseki (Explosion Disaster Analysis); Nikkankogyoshinbunsha: Tokyo, Japan, 1980; pp. 277–324. (In Japanese) [Google Scholar]
- Ogiso, C.; Uehara, Y. Experimental study of vapor explosions caused by the abrupt destruction of phase equilibrium. J. Jpn. Soc. Saf. Eng. 1985, 24, 192–198. (In Japanese) [Google Scholar]
- Takashima, T.; Iida, Y. Joukibakuhatsu No Kagaku (The Science of Vapor Explosion); Shoukabou: Tokyo, Japan, 1998; p. 172. (In Japanese) [Google Scholar]
- Yamamoto, T. The pyroclastic density currents generated by the September 27, 2014 phreatic eruption of Ontake Volcano, Japan. Bull. Geol. Surv. Japan. 2014, 65, 117–127. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Oikawa, T.; Yoshimoto, M.; Nakada, S.; Maeno, F.; Komori, J.; Shimano, T.; Takeshita, Y.; Ishizuka, Y.; Ishimine, Y. Reconstruction of the 2014 eruption sequence of Ontake Volcano from recorded images and interviews. Earth Planet. Space 2016, 68, 489. [Google Scholar] [CrossRef] [Green Version]
- Stix, J.; Moor, J.M. Understanding and forecasting phreatic eruptions driven by magmatic degassing. Earth Planet. Space 2018, 70, 83. [Google Scholar] [CrossRef] [Green Version]
- Montanaro, C.; Cronin, S.; Scheu, B.; Kennedy, B.; Scott, B. Complex crater fields formed by steam-driven eruptions: Lake Okaro, New Zealand. GSA Bull. 2020, 1–17. [Google Scholar] [CrossRef]
- Stimac, J.; Goff, F.; Goff, C.J. Intrusion-Related Geothermal Systems. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H., Stix, J., Eds.; Academic Press: Amsterdam, The Netherlands, 2015; pp. 799–822. [Google Scholar] [CrossRef]
- Miyake, Y.; Osaka, J. Steam explosion of February 11th, 1995 at Nakanoyu hot spring, Nagano prefecture, central Japan. Bull. Volcanol. Soc. Jpn. 1998, 43, 113–121. (In Japanese) [Google Scholar] [CrossRef]
- Montanaro, C.; Scheu, B.; Gudmundsson, M.T.; Vogfjörd, K.; Reynolds, H.I.; Dürig, T.; Strehlow, K.; Rott, S.; Reuschlé, T.; Dingwell, D.B. Multidisciplinary constraints of hydrothermal explosions based on the 2013 Gengissig lake events, Kverkfjöll volcano, Iceland. Earth Planet. Sci. Lett. 2016, 434, 308–319. [Google Scholar] [CrossRef] [Green Version]
- Montanaro, C.; Scheu, B.; Cronin, S.J.; Breard, E.C.P.; Lube, G.; Dingwell, D.B. Experimental estimates of the energy budget of hydrothermal eruptions; application to 2012 Upper Te Maari eruption, New Zealand. Earth Planet. Sci. Lett. 2016, 452, 281–294. [Google Scholar] [CrossRef] [Green Version]
- Hedenquist, J.W.; Henley, R.W. Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: Their origin, associated breccias, and relation to precious metal mineralization. Econ. Geol. 1985, 80, 1640–1668. [Google Scholar] [CrossRef]
- Facca, A.; Tonani, F. The self-sealing geothermal field. Bull. Volcanol. 1967, 30, 271–273. [Google Scholar] [CrossRef]
- Fournier, R.O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 1999, 94, 1193–1211. [Google Scholar] [CrossRef]
- Aizawa, K.; Ogawa, Y.; Ishido, T. Groundwater flow and hydrothermal systems within volcanic edifices: Delineation by electric self-potential and magnetotellurics. J. Geophys. Res. 2009, 114, B01208. [Google Scholar] [CrossRef]
- Aizawa, K. Groundwater flow beneath volcanoes inferred from electric self-potential and magnetotellurics. Bull. Volcanol. Soc. Jpn. 2010, 55, 251–259. (In Japanese) [Google Scholar] [CrossRef]
- Kanda, W.; Utsugi, M.; Tanaka, Y.; Hashimoto, T.; Fujii, I.; Hasenaka, T.; Shigeno, N. A heating process of Kuchi-erabu-jima volcano, Japan, as inferred from geomagnetic field variations and electrical structure. J. Volcanol. Geotherm. Res. 2010, 189, 158–171. [Google Scholar] [CrossRef] [Green Version]
- Mannen, K.; Tanada, T.; Jomori, A.; Akatsuka, T.; Kikugawa, G.; Fukazawa, Y.; Yamashita, H.; Fujimoto, K. Source constraints for the 2015 phreatic eruption of Hakone volcano, Japan, based on geological analysis and resistivity structure. Earth Planet. Space 2019, 71, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lévy, L.; Maurya, P.K.; Byrdina, S.; Vandemeulebrouk, J.; Sigmundsson, F.; Árnason, K.; Ricci, T.; Deldicque, D.; Roger, M.; Gibert, B.; et al. Electrical resistivity tomography and time-domain induced polarization field investigations of geothermal areas at Krafla, Iceland: Comparison to borehole and laboratory frequency-domain electrical observations. Geophys. J. Int. 2019, 218, 1469–1489. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, K.; Aizawa, K.; Chiba, K.; Kanda, W.; Ueshima, M.; Koyama, T.; Utsugi, M.; Seki, K.; Kishita, T. Three-dimensional resistivity structure of Iwo-yama volcano, Kirishima volcanic complex, Japan: Relationship to shallow seismicity, surface uplift, and a small phreatic eruption. Geophys. Res. Lett. 2018, 45. [Google Scholar] [CrossRef]
- Fujinawa, A.; Kamoshida, T.; Tanase, A.; Tanimoto, K.; Nakamura, Y.; Kontani, K. Reconsideration of the 1900 explosive eruption at Adatara volcano, northeastern Japan. Bull. Volcanol. Soc. Jpn. 2006, 51, 311–325. (In Japanese) [Google Scholar] [CrossRef]
- Sudo, Y. Aso Ni Manabu (Learn. from Aso); Toukashobou: Fukuoka, Japan, 2007; p. 319. (In Japanese) [Google Scholar]
- Kawanabe, Y.; Nogami, K. Kusatsu-Shiranesan. In National Catalogue of the Active Volcanoes in Japan, 4th ed.; Japan Meteorological Agency: Tokyo, Japan, 2013; pp. 1–25. [Google Scholar]
- Imura, R.; Kobayashi, T. Geological Map of Kirishima Volcano (Geological Map of Volcanoes 11); Geological survey of Japan: Tsukuba, Japan, 2001; pp. 1–8. (In Japanese) [Google Scholar]
- Imura, R. Minor phreatic activity of Shinmoedake, Kirishima volcanoes, in 1991–1992. Bull. Volcanol. Soc. Jpn. 1992, 37, 281–283. (In Japanese) [Google Scholar] [CrossRef]
- Geshi, N.; Takarada, S.; Tsustui, M.; Mori, T.; Kobayashi, T. Products of the August eruption of Shinmoedake Volcano, Kirishima Volcanic Group, Japan. Bull. Volcanol. Soc. Jpn. 2010, 55, 53–64. (In Japanese) [Google Scholar] [CrossRef]
- Tajima, Y.; Matsuo, Y.; Shoji, T.; Kobayashi, T. Eruptive history of Ebinokogen volcanic area of Kirishima volcanoes for the past 15,000 years in Kyushu, Japan. Bull. Volcanol. Soc. Jpn. 2014, 59, 55–75. (In Japanese) [Google Scholar] [CrossRef]
- Fukuoka District Meteorological Observatory; Kagoshima Local Meteorological Observatory; Miyazaki Local Meteorological Observatory. Showa 34 Nen 2 Gatsu 17 Nichi No Kirishimayama Shinmoedake No Bakuhatsu (Eruption of Shinmoedake, Kirishima Volcano, on 17 February 1959); Fukuoka District Meteorological Observatory: Tokyo, Japan, 1959; p. 15. (In Japanese) [Google Scholar]
- Kagiyama, T.; Uhira, K.; Watanabe, T.; Masutani, F.; Yamaguchi, M. Geothermal survey of the volcanoes Kirisima. Bull. Earthq. Res. Inst. 1979, 54, 187–210. (In Japanese) [Google Scholar]
- Kagiyama, T. Eruption dominant volcanism vs. geothermal activity dominant volcanism—New aspect in volcanism. J. Geotherm. Res. Soc. Jpn. 2008, 30, 193–204. (In Japanese) [Google Scholar] [CrossRef]
- McKee, K.; Fee, D.; Yokoo, A.; Matoza, R.S.; Kim, K. Analysis of gas jetting and fumarole acoustics at Aso volcano, Japan. J. Volcanol. Geotherm. Res. 2017, 340, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Heasler, H.P.; Jaworowski, C.; Foley, D. Geothermal systems and monitoring hydrothermal features. In Geological Monitoring; Young, R., Norby, L., Eds.; Geological Society of America: Boulder, CO, USA, 2009; pp. 105–140. [Google Scholar] [CrossRef]
- Machida, H.; Arai, F. Atlas of Tephra in and around Japan; University of Tokyo Press: Tokyo, Japan, 2003; pp. 185–188. (In Japanese) [Google Scholar]
- Kashmir3d, Ver.9.3.4; Sugimoto Tomohiko©. 2005. Available online: http://www.kashmir3d.com (accessed on 10 January 2020).
- Okuno, M. Chronology of tephra layers in southern Kyushu, SW Japan, for the last 30,000 years. Quat. Res. 2002, 41, 225–236. (In Japanese) [Google Scholar] [CrossRef]
- Geothermal Research Department, Geological survey of Japan. Studies on natural steam at Ebino hot spring in Miyazaki prefecture. Bull. Geol. Surv. Jpn. 1955, 10, 611–626. (In Japanese) [Google Scholar]
- Oda, R. Kirishima kazan tiiki chishitu chousa houbun (Report of geological survey in Kirishima volcano area). Bull. Imp. Earthq. Investig. Comm. 1921, 96, 1–58. (In Japanese) [Google Scholar]
- Funasaki, J.; Shimomura, M.; Kuroki, C. Document on geothermal activities at Ebino highland including Iou-yama, Kirishima volcano, since the Meiji era. Quart. J. Seismol. 2017, 80, 1–11. (In Japanese) [Google Scholar]
- Kimbara, K.; Sakaguchi, K. Geology, distribution of hot springs and hydrothermal alteration zones of major geothermal areas in Japan. Rept. Geol. Surv. Jpn. 1989, 270, 1–428. (In Japanese) [Google Scholar]
- Google Earth Pro, 7.3.2.5776; ZENRIN: Fukuoka, Japan, 2020.
- Itoh, J.; Hamasaki, S.; Kawanabe, Y. Re-evaluation of explosive activities of Iwate Volcano in the last 10,000 years: Spatial and temporal relationship of phreatic and magmatic explosions. J. Geol. Soc. Jpn. 2018, 124, 271–296. (In Japanese) [Google Scholar] [CrossRef]
- Nakada, S.; Nagai, M.; Kaneko, T.; Suzuki, Y.; Maeno, F. The outline of the 2011 eruption at Shinmoe-dake (Kirishima), Japan. Earth Planet. Space 2013, 65, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Kagoshima Meteorological Office, JMA. Fukuoka Regional Headquarters, JMA. Volcanic Activity of Kirishimayama Volcano—May–October 2014. Rep. Coord. Comm. Predict. Volcan. Erupt. 2016, 119, 213–259. (In Japanese) [Google Scholar]
- Fukuoka Regional Headquaters, JMA. Volcanic Activity of Kirishimayama Volcano—June–October 2015. Rep. Coord. Comm. Predict. Volcan. Erupt. 2018, 122, 347–379. (In Japanese) [Google Scholar]
- Japan Meteorological Agency Website. Available online: http://www.data.jma.go.jp/svd/vois/data/tokyo/volcano.html (accessed on 20 January 2019).
- YamaReco. Available online: https://www.yamareco.com/ (accessed on 10 January 2019).
- Tajima, Y.; Nakada, S.; Nagai, M.; Maeno, F.; Watanabe, A. Small eruption at the Ebinokogen Ioyama volcano of the Kirishima Volcano Group in April 2018. Bull. Volcanol. Soc. Jpn. 2019, 64, 147–151. (In Japanese) [Google Scholar] [CrossRef]
- Kagoshima Local Meteorological Office, JMA. Regional Volcanic Observation and Warning Center, Fukuoka Regional Headquarters, JMA. Volcanic Activity of Kirishimayama Volcano—1 February 2018 –31 May 2018. Rep. Coord. Comm. Predict. Volcan. Erupt. 2018, 130, 213–284. (In Japanese) [Google Scholar]
- Nagai, M.; Tajima, Y.; Maeno, F.; Nakada, S.; Furuzono, T.; Watanabe, A. Products of the 2018 eruption around Ioyama in Ebino kogen area, Kirishima Volcano Group, Southern Kyushu, Japan. In Proceedings of the Programme and Abstracts of the Volcanological Society of Japan 2018 Fall Meeting, Akita, Japan, 26 September 2018; p. 7. (In Japanese). [Google Scholar]
- Kagoshima Local Meteorological Office, JMA. Regional Volcanic Observation and Warning Center, Fukuoka Regional Headquarters, JMA. Volcanic Activity of Kirishimayama Volcano—1 September 2017–31 January 2019. Rep. Coord. Comm. Predict. Volcan. Erupt. 2019, 132, 240–311. (In Japanese) [Google Scholar]
- White, N.C.; Hedenquist, J.W. Epithermal gold deposits: Styles, characteristics and exploration. SEG Newsl. 1995, 23, 9–13. [Google Scholar]
- Taran, Y.A.; Pokrovsky, B.G.; Dubik, Y.M. Isotopic composition and origin of water from andesitic magmas. Dokl. Acad. Nauk. USSR 1989, 304, 440–443. [Google Scholar]
- Giggenbach, W.F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet. Sci. Lett. 1992, 113, 495–510. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Kagiyama, T.; Yamaguchi, M.; Masutani, F.; Utada, H. VLF, ELF-MT survey around Iwo-yama, Kirishima Volcanoes. Bull. Earthq. Res. Inst. 1994, 69, 211–239. (In Japanese) [Google Scholar]
- Morita, K.; Matsushima, T.; Yokoo, K.; Miyamachi, R.; Teguri, Y.; Fujita, S.; Nakamoto, M.; Shimizu, H.; Chiba, K.; Koga, Y.; et al. Vertical ground deformation of Iwoyama, Kirishima volcanoes measured by precise leveling survey (during June 2015–February 2017). In Proceedings of the Japan Geoscience Union Meeting 2018, Chiba, Japan, 20–24 May 2018. [Google Scholar]
- Nakao, S.; Morita, Y.; Yakiwara, H.; Oikawa, J.; Ueda, H.; Takahashi, H.; Ohta, Y.; Matsushima, T.; Iguchi, M. Volume change of the magma reservoir relating to the 2011 Kirishima Shinmoe-dake eruption—Charging, discharging and recharging process inferred from GPS measurements. Earth Planet. Space 2013, 65, 505–515. [Google Scholar] [CrossRef]
- Kagoshima Local Meteorological Office, JMA. Regional Volcanic Observation and Warning Center, Fukuoka Regional Headquarters, JMA. Volcanic Activity of Kirishimayama Volcano—June–October 2012. Rep. Coord. Comm. Predict. Volcan. Erupt. 2014, 113, 148–172. (In Japanese) [Google Scholar]
- Suzuki, Y.; Yasuda, A.; Hokanishi, N.; Kaneko, T.; Nakada, S.; Toshitsugu, F. Syneruptive deep magma transfer and shallow magma remobilization during the 2011 eruption of Shinmoe-dake, Japan—Constraints from melt inclusions and phase equilibria experiments. J. Volcanol. Geotherm. Res. 2013, 257, 184–204. [Google Scholar] [CrossRef]
- Aizawa, K.; Koyama, T.; Hase, H.; Uyeshima, M.; Kanda, W.; Utsugi, M.; Yoshimura, R.; Yamaya, Y.; Hashimoto, T.; Yamazaki, K.; et al. Three-dimensional resistivity structure and magma plumbing system of the Kirishima Volcanoes as inferred from broadband magnetotelluric data. JGR Solid Earth. 2014, 119, 198–215. [Google Scholar] [CrossRef]
- Hayashi, M. Hydrothermal alteration in the Otake geothermal area, Kyushu. J. Jpn. Geotherm. Energy Assoc. 1973, 38, 9–46. [Google Scholar]
- Kiyosaki, J.; Tanaka, K.; Taguchi, S.; Chiba, H.; Takeuchi, K.; Motomura, Y. Hypogene alunite from acid alteration zone in Hatchobaru geothermal field, Kyushu, Japan. J. Geotherm. Res. Soc. Jpn. 2006, 28, 287–297. (In Japanese) [Google Scholar] [CrossRef]
- Hiraon, T. Hydrothermal alteration of volcanic rocks in the Hakone and northern Izu geothermal area. Bull. Hot Springs Res. Inst. Kanagawa Pref. 1986, 17, 73–166. [Google Scholar]
- Minami, Y.; Imura, T.; Hayashi, S.; Ohba, T. Mineralogical study on volcanic ash of the eruption on September 27, 2014 at Ontake volcano, central Japan: Correlation with porphyry copper systems. Earth Planet. Space 2016, 68, 1841. [Google Scholar] [CrossRef] [Green Version]
- Zimbelman, D.R.; Rye, R.O.; Breit, G.N. Origin of secondary sulfate minerals on active andesitic stratovolcanoes. Chem. Geol. 2005, 215, 37–60. [Google Scholar] [CrossRef] [Green Version]
- Mayer, K.; Scheu, B.; Yilmaz, T.I.; Montanaro, C.; Gilg, H.A.; Rott, S.; Joseph, E.P.; Dingwell, D.B. Phreatic activity and hydrothermal alteration in the Valley of Desolation, Dominica, Lesser Antilles. Bull. Volcanol. 2017, 79, 82. [Google Scholar] [CrossRef]
- Imura, T.; Ohba, T.; Nakagawa, M. Characteristics of hydrothermally altered minerals in volcanic products at Tokachidake volcano, central Hokkaido, Japan. Jour. Geol. Soc. Jpn. 2019, 125, 203–218. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Seki, K.; Kanda, W.; Ogawa, Y.; Tanbo, T.; Kobayashi, T.; Hino, Y.; Hase, H. Imaging the hydrothermal system beneath the Jigokudani valley, Tateyama volcano, Japan: Implications for structures controlling repeated phreatic eruptions from an audio-frequency magnetotelluric survey. Earth Planet. Space 2015, 67, 539. [Google Scholar] [CrossRef] [Green Version]
- Akasaki, A.; Imura, R. Reconstruction of eruptive history of the central part of Kirishima Volcano from the drill core at Ebino Highland. In Proceedings of the Programme and abstracts of the Volcanological Society of Japan 2018 Fall Meeting, Akita, Japan, 26 September 2018; p. 217. (In Japanese). [Google Scholar]
- Imura, R. Geology of Kirishima Volcano. Bull. Earthq. Res. Inst. Univ. Tokyo. 1994, 69, 189–209. (In Japanese) [Google Scholar]
- Takakura, S. Influence of pore-water salinity and temperature on resistivity of clay-bearing rocks. Butsuri Tansa. 2009, 62, 385–396. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Byrdina, S.; Grandis, H.; Sumintadireja, P.; Caudron, C.; Syahbana, D.K.; Naffrechoux, E.; Gunawan, H.; Suantika, G.; Vandemeulebrouck, J. Structure of the acid hydrothermal system of Papandayan volcano, Indonesia, investigated by geophysical methods. J. Volcanol. Geotherm. Res. 2018, 358, 77–86. [Google Scholar] [CrossRef]
- Vandemeulebrouck, J.; Stemmelen, D.; Hurst, T.; Grangeon, G. Analogue modeling of instabilities in crater lake hydrothermal systems. JGR Solid Earth. 2005, 110, B02212. [Google Scholar] [CrossRef] [Green Version]
- Legaz, A.; Vandemeulebrouck, J.; Revil, A.; Kemna, A.; Hurst, A.W.; Reeves, R.; Papasin, R. A case study of resistivity and self-potential signatures of hydrothermal instabilities, Inferno Crater Lake, Waimangu, New Zealand. Geophys. Res. Lett. 2009, 36, L12306. [Google Scholar] [CrossRef]
- White, J.D.L.; Ross, P.-S. Maar-diatreme volcanoes: A review. J. Volcanol. Geotherm. Res. 2011, 201, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Morgan, L.A.; Shanks, W.C.P.; Pierce, K.L. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions. GSA Spec. Pap. 2009, 459, 1–95. [Google Scholar] [CrossRef]
- Vandemeulebrouck, J.; Sohn, R.A.; Rudolph, M.L.; Hurwitz, S.; Manga, M.; Johnston, M.J.S.; Soule, S.A.; McPhee, D.; Glen, J.M.G.; Karlstrom, L.; et al. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics. JGR Solid Earth. 2013, 119, 8688–8707. [Google Scholar] [CrossRef] [Green Version]
- McKibbin, R.; Smith, T.A.; Fullard, L. Components and phases: Modelling progressive hydrothermal eruptions. Anziam J. 2009, 50, 365–380. [Google Scholar] [CrossRef] [Green Version]
- Allis, R.G. Thermal history of the Karapiti area, Wairakei. Geophys. Div. N. Z. 1981, 137, 1–38. [Google Scholar]
- Allis, R.G. The 9 April 1983 steam eruption at Crater of the Moon thermal area, Wairakei. Geophys. Div. N. Z. 1984, 196, 1–25. [Google Scholar]
- Doke, R.; Harada, M.; Mannen, K.; Itadera, K.; Tatenaka, J. InSAR analysis for detecting the route of hydrothermal fluid to the surface during the 2015 phreatic eruption of Hakone Volcano, Japan. Earth Planet. Space 2018, 70, 63. [Google Scholar] [CrossRef] [Green Version]
- Mannen, K.; Yukutake, Y.; Kikugawa, G.; Harada, M.; Itadera, K.; Tatenaka, J. Chronology of the 2015 eruption of Hakone volcano, Japan: Geological background, mechanism of volcanic unrest and disaster mitigation measures during the crisis. Earth Planet. Space 2018, 70, 68. [Google Scholar] [CrossRef]
- Mastin, L.G. The roles of magma and groundwater in the phreatic eurptions at Inyo Craters, Long Valley Caldera, California. Bull. Volcanol. 1991, 53, 579–596. [Google Scholar] [CrossRef]
- Valentine, G.A.; Graettinger, A.H.; Sonder, I. Explosion depths for phreatomagmatic eruptions. Geophys. Res. Lett. 2014, 41, 3045–3051. [Google Scholar] [CrossRef]
- Valentine, G.A.; Sottili, G.; Palladino, D.M.; Taddeucci, J. Tephra ring interpretation in light of evolving maar–diatreme concepts: Stracciacappa maar (central Italy). J. Volcanol. Geotherm. Res. 2015, 308, 19–29. [Google Scholar] [CrossRef]
- Kaneko, T.; Maeno, F.; Nakada, S. 2014 Mount Ontake eruption: Characteristics of the phreatic eruption as inferred from aerial observations. Earth Planet. Space 2016, 68, 1226. [Google Scholar] [CrossRef] [Green Version]
- Maeda, Y.; Kato, A.; Terakawa, T.; Yamanaka, Y.; Horikawa, S.; Matsuhiro, K.; Okuda, T. Source mechanism of a VLP event immediately before the 2014 eruption of Mt. Ontake, Japan. Earth Planet. Space 2015, 67, 716. [Google Scholar] [CrossRef] [Green Version]
- Takagi, A.; Onizawa, S. Shallow pressure sources associated with the 2007 and 2014 phreatic eruptions of Mt. Ontake, Japan. Earth Planet. Space 2016, 68, 119. [Google Scholar] [CrossRef] [Green Version]
- Kato, A.; Terakawa, T.; Yamanaka, Y.; Maeda, Y.; Horikawa, S.; Matsuhiro, K.; Okubo, T. Preparatory and precursory processes leading up to the 2014 phreatic eruption of Mount Ontake, Japan. Earth Planet. Space 2015, 67, 111. [Google Scholar] [CrossRef] [Green Version]
- Miyagi, I.; Geshi, N.; Hamasaki, S.; Oikawa, T.; Tomiya, A. Heat source of the 2014 phreatic eruption of Mount Ontake, Japan. Bull. Volcanol. 2020, 82, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Takagi, A. Ground deformation around the Shinmoedake crater before the 2011 Kirishimayama eruption. In Development of quantitative detection techniques of magma activity and improvement of evaluation of volcanic activity level. Tech. Rep. Meteorol. Res. Inst. 2013, 146–151. (In Japanese) [Google Scholar]
- Caudron, C.; Taisne, B.; Neuberg, J.; Jolly, A.D.; Christenson, B.; Lecocq, T.; Suparjan; Syahbana, D.; Suantika, G. Anatomy of phreatic eruptions. Earth Planet. Space 2018, 70, 168. [Google Scholar] [CrossRef]
- Kobayashi, T.; Morishita, Y.; Munekane, H. First detection of precursory ground inflation of a small phreatic eruption by InSAR. Earth Planet. Sci. Lett. 2018, 491, 244–254. [Google Scholar] [CrossRef]
- Volcanic Alert Levels of Kirishimayama (Around Ebinokogen (Ioyama)). Available online: https://www.data.jma.go.jp/svd/vois/data/tokyo/keikailevel.html (accessed on 10 January 2020).
- Volcanic Disaster Prevention Map of Mt. Kirishima. Available online: https://www.pref.miyazaki.lg.jp/kiki-kikikanri/kurashi/bosai/bousai-kikikanri/kazan_bousai_map.html (accessed on 10 January 2020).
Crater Name | Day of the Beginning | Diameter | Depression Depth | Depression Volume | ||
---|---|---|---|---|---|---|
Long (m) | Short (m) | max (m) | min (m) | Mean (min–max) (m3) | ||
Y1 | 7 April, 2 am | 9 | 5 | – | – | – |
Y2a | 19 April, 3 pm | 37 | 15 | 10 | 3 | 2800 (1300–4400) |
Y3 | 19 April, 3 pm | 33 | 19 | 12 | 3 | 3700 (1400–6000) |
Y2b | 19 to 20 April | 26 | 19 | 8 | 2 | 1900 (800–3000) |
Sample Name | Alu | Kl | Cr | Qz | Py | Sm | S |
---|---|---|---|---|---|---|---|
20170426-ash | ++++ | + | +++ | + | |||
20180419-ash | +++ | + | + | +++ | + | + | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajima, Y.; Nakada, S.; Maeno, F.; Huruzono, T.; Takahashi, M.; Inamura, A.; Matsushima, T.; Nagai, M.; Funasaki, J. Shallow Magmatic Hydrothermal Eruption in April 2018 on Ebinokogen Ioyama Volcano in Kirishima Volcano Group, Kyushu, Japan. Geosciences 2020, 10, 183. https://doi.org/10.3390/geosciences10050183
Tajima Y, Nakada S, Maeno F, Huruzono T, Takahashi M, Inamura A, Matsushima T, Nagai M, Funasaki J. Shallow Magmatic Hydrothermal Eruption in April 2018 on Ebinokogen Ioyama Volcano in Kirishima Volcano Group, Kyushu, Japan. Geosciences. 2020; 10(5):183. https://doi.org/10.3390/geosciences10050183
Chicago/Turabian StyleTajima, Yasuhisa, Setsuya Nakada, Fukashi Maeno, Toshio Huruzono, Masaaki Takahashi, Akihiko Inamura, Takeshi Matsushima, Masashi Nagai, and Jun Funasaki. 2020. "Shallow Magmatic Hydrothermal Eruption in April 2018 on Ebinokogen Ioyama Volcano in Kirishima Volcano Group, Kyushu, Japan" Geosciences 10, no. 5: 183. https://doi.org/10.3390/geosciences10050183
APA StyleTajima, Y., Nakada, S., Maeno, F., Huruzono, T., Takahashi, M., Inamura, A., Matsushima, T., Nagai, M., & Funasaki, J. (2020). Shallow Magmatic Hydrothermal Eruption in April 2018 on Ebinokogen Ioyama Volcano in Kirishima Volcano Group, Kyushu, Japan. Geosciences, 10(5), 183. https://doi.org/10.3390/geosciences10050183