Zircon as a Mineral Indicating the Stage of Granitoid Magmatism at Northern Chukotka, Russia
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. BG Zircon
4.2. MG Zircon
4.3. ZG Zircon
5. Discussion
5.1. Morphology of Zircon
5.2. Composition of Zircon
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Miner. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Kempe, U.; Gruner, T.; Renno, A.D.; Wolf, D.; Reno, M. Discussion on Wang (2000). Chemistry of Hf-rich zircons from the Laoshan I- and A-type granites, Eastern China. Min. Mag. 2004, 68, 669–675. [Google Scholar] [CrossRef]
- Harley, S.L.; Kelly, N.M. Zircon. Tiny but Timely. Elements 2007, 3, 13–18. [Google Scholar] [CrossRef]
- Goryachev, N.A. Chukotka plutonic belt (late Jura — Cretaceous). Geodyn. Magmat Metallog. Russ. East 2006, 1, 230–242. (In Russian) [Google Scholar]
- Alekseev, V.I. Lithium-Fluoric Granites of the Far East; Saint-Petersburg Mining University: St. Petersburg, Russia, 2014; pp. 1–244. (In Russian) [Google Scholar]
- Nokleberg, W.J.; Parfenov, L.M.; Monger, J.W.H.; Norton, I.O.; Khanchuk, A.I.; Stone, D.B.; Scotese, C.R.; Scholl, D.W.; Fujita, K. Phanerozoic tectonic evolution of the Circum-North Pacific. USGS Prof. Paper 2000, 1626, 1–122. [Google Scholar]
- Brodskaya, R.L.; Marin, Y.B. Ontogenetic analysis of mineral grains and aggregates at micro- and nanolevel for the restoration of ore-forming conditions and assessment of mineral raw technological properties. J. Min. Inst. 2016, 219, 369–376. (In Russian) [Google Scholar]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Alekseev, V.I.; Marin, Y.B.; Skublov, S.G.; Gembitskaya, I.M. First data on chemical composition of zircon from lithium–fluorine granite of the Severnyi Pluton, Chukchi Peninsula. Geol. Ore Depos. 2012, 54, 570–574. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Miner. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Pupin, J.P. Zircon and granite petrology. Contrib. Miner. Petrol. 1980, 73, 207–220. [Google Scholar] [CrossRef]
- Pelleter, E.; Cheilletz, A.; Gasquet, D.; Mouttaqi, A.; Annich, M.; El Hakour, A.; Deloule, E.; Féraud, G. Hydrothermal zircons: A tool for ion microprobe U–Pb dating of gold mineralization (Tamlalt–Menhouhou gold deposit – Morocco). Chem. Geol. 2007, 245, 135–161. [Google Scholar] [CrossRef]
- Pettke, T.; Audétat, A.; Schaltegger, U.; Heinrich, C.A. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia). Part II: Evolving zircon and thorite trace element chemistry. Chem. Geol. 2005, 220, 191–213. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Miner. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Huang, X.L.; Wang, R.C.; Chen, X.M.; Hu, H.; Liu, C.S. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. Can. Mineral. 2002, 40, 1047–1068. [Google Scholar] [CrossRef]
- Johan, Z.; Johan, V. Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic: Indicators of petrogenetic evolution. Mineral. Petrol. 2005, 83, 113–150. [Google Scholar] [CrossRef]
- Breiter, K.; Főrster, H.-J.; Škoda, R. Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorons granites: The peraluminous Podlesí granite system. Czech Republic. Lithos 2006, 88, 15–34. [Google Scholar] [CrossRef]
- Abdalla, H.M.; Helba, H.; Matsueda, H. Chemistry of zircon in rare metal granitoids and associated rocks, Eastern Desert, Egypt. Resour. Geol. 2009, 59, 51–68. [Google Scholar] [CrossRef]
Component | Biotite Granites | Monzonites, Monzogranites | Zinnwaldite Granites | ||||||
---|---|---|---|---|---|---|---|---|---|
4063 | 4105 | BG | 2739 | 9253 | MG | 4193 | 4447 | ZG | |
EPMA, weight % | |||||||||
SiO2 | 28.65 | 32.58 | 32.04 | 33.27 | 32.88 | 34.04 | 33.40 | 31.53 | 32.27 |
ZrO2 | 69.83 | 66.07 | 66.88 | 64.18 | 64.09 | 63.18 | 57.70 | 63.47 | 61.81 |
HfO2 | 0.17 | 0.85 | 0.60 | 1.20 | 1.67 | 1.61 | 5.99 | 2.46 | 3.78 |
ThO2 | 0.01 | 0.02 | 0.04 | 0.07 | 0.04 | 0.13 | 0.07 | 0.17 | 0.17 |
UO2 | 0.03 | 0.06 | 0.06 | 0.28 | 0.06 | 0.24 | 1.42 | 0.94 | 1.00 |
Total | 98.68 | 99.59 | 99.61 | 99.00 | 98.75 | 99.20 | 98.58 | 98.58 | 99.03 |
SIMS, ppm | |||||||||
Y | 2452 | 1880 | 1818 | 2506 | 3884 | 2833 | 3140 | 3829 | 3904 |
ΣHREE | 1147 | 913 | 758 | 1466 | 1663 | 2684 | 6481 | 5254 | 7151 |
ΣLREE | 4.72 | 10.7 | 12.3 | 21.8 | 83.2 | 112 | 31.2 | 68.2 | 147 |
Al | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 377 | 251 | 566 | b.d.l. | 188 |
Ca | 3.63 | 1.62 | 19.5 | 7.61 | 719 | 127 | 46.3 | 137 | 143 |
Ti | 18.0 | 5.88 | 11.9 | 2.91 | 7.46 | 13.6 | 13.2 | 56.1 | 37.0 |
Nb | 12.3 | 32.0 | 38.7 | 39.5 | 22.5 | 62.9 | 360 | 811 | 694 |
T(Ti),°C | 798 | 698 | 758 | 645 | 718 | 771 | 768 | 922 | 873 |
Structural Formulae, apfu | |||||||||
Si | 0.911 | 1.000 | 0.997 | 1.022 | 1.014 | 1.035 | 1.042 | 0.989 | 1.006 |
Zr | 1.083 | 0.989 | 1.004 | 0.961 | 0.963 | 0.937 | 0.884 | 0.970 | 0.939 |
Hf | 0.002 | 0.008 | 0.005 | 0.011 | 0.015 | 0.014 | 0.053 | 0.022 | 0.034 |
Th | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 |
U | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.002 | 0.010 | 0.007 | 0.007 |
Y | 0.004 | 0.003 | 0.003 | 0.004 | 0.006 | 0.005 | 0.005 | 0.006 | 0.007 |
ΣHREE | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.007 | 0.006 | 0.004 |
ΣLREE | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Al | 0.001 | 0.001 | 0.002 | 0.001 | |||||
Ca | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.001 | 0.001 |
Ti | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Nb | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 |
REE | Biotite Granites | Monzonites, Monzogranites | Zinnwaldite Granites | ||||||
---|---|---|---|---|---|---|---|---|---|
4063 | 4105 | BG | 2739 | 9253 | MG | 4193 | 4447 | ZG | |
La | 0.23 | 0.08 | 0.43 | 0.68 | 9.13 | 9.24 | 2.67 | 7.29 | 10.8 |
Ce | 2.12 | 9.09 | 8.92 | 16.5 | 40.7 | 60.8 | 14.3 | 35.4 | 82.7 |
Pr | 0.14 | 0.12 | 0.28 | 0.44 | 4.86 | 5.90 | 1.92 | 4.24 | 8.26 |
Nd | 2.23 | 1.42 | 2.61 | 4.26 | 28.5 | 36.4 | 12.4 | 21.2 | 46.0 |
Sm | 4.53 | 4.05 | 4.30 | 6.18 | 20.6 | 30.1 | 20.3 | 26.1 | 53.9 |
Eu | 0.20 | 0.11 | 0.09 | 0.40 | 0.80 | 1.47 | 0.25 | 0.35 | 0.54 |
Gd | 27.6 | 24.3 | 21.5 | 33.3 | 67.4 | 93.4 | 61.5 | 65.3 | 145 |
Dy | 132 | 115 | 95.6 | 150 | 220 | 349 | 382 | 418 | 740 |
Er | 317 | 255 | 206 | 378 | 477 | 715 | 1120 | 1067 | 1622 |
Yb | 573 | 451 | 377 | 779 | 783 | 1327 | 4204 | 3197 | 4049 |
Lu | 96.9 | 66.8 | 58.7 | 126 | 115 | 200 | 714 | 506 | 595 |
Ratios of Chondrite-Normalized Zircon REE Patterns | |||||||||
Eu/Eu* | 0.06 | 0.03 | 0.03 | 0.08 | 0.07 | 0.08 | 0.02 | 0.03 | 0.02 |
Ce/Ce* | 2.91 | 22.0 | 16.2 | 7.23 | 1.48 | 2.96 | 1.53 | 1.54 | 2.03 |
LuN/LaN | 4132 | 7792 | 3894 | 1775 | 121.9 | 524 | 2577 | 668 | 803 |
LuN/GdN | 28.4 | 22.2 | 22.4 | 30.6 | 13.9 | 21.2 | 94.0 | 62.7 | 42.7 |
SmN/LaN | 32.1 | 78.6 | 51.5 | 14.5 | 3.61 | 7.91 | 12.2 | 5.74 | 8.79 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alekseev, V.I.; Alekseev, I.V. Zircon as a Mineral Indicating the Stage of Granitoid Magmatism at Northern Chukotka, Russia. Geosciences 2020, 10, 194. https://doi.org/10.3390/geosciences10050194
Alekseev VI, Alekseev IV. Zircon as a Mineral Indicating the Stage of Granitoid Magmatism at Northern Chukotka, Russia. Geosciences. 2020; 10(5):194. https://doi.org/10.3390/geosciences10050194
Chicago/Turabian StyleAlekseev, Viktor I., and Ivan V. Alekseev. 2020. "Zircon as a Mineral Indicating the Stage of Granitoid Magmatism at Northern Chukotka, Russia" Geosciences 10, no. 5: 194. https://doi.org/10.3390/geosciences10050194
APA StyleAlekseev, V. I., & Alekseev, I. V. (2020). Zircon as a Mineral Indicating the Stage of Granitoid Magmatism at Northern Chukotka, Russia. Geosciences, 10(5), 194. https://doi.org/10.3390/geosciences10050194