Submagmatic to Solid-State Deformation Microstructures Recorded in Cooling Granitoids during Exhumation of Late-Variscan Crust in North-Eastern Sicily
Abstract
:1. Introduction
2. Geo-Petrological Background
3. Granitoid Rocks in the Study Area
4. Materials and Methods
5. Shear-Related Microstructures
5.1. Trondhjemites
5.2. Low-Ca Granitoids
6. Discussion
6.1. A Late-Variscan Shear Zone in the Peloritani Mountains
6.2. Supra- to Sub-Solidus Deformation in Granitoids Cooling at Middle to Upper Crustal Depth
6.3. Implications for Shear-Assisted Exhumation
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fazio, E.; Ortolano, G.; Visalli, R.; Alsop, I.; Cirrincione, R.; Pezzino, A. Strain localization and sheath fold development during progressive deformation in a ductile shear zone: A case study of macro-to micro-scale structures from the Aspromonte Massif, Calabria. Ital. J. Geosci. 2018, 137, 208–218. [Google Scholar] [CrossRef]
- Pezzino, A.; Angi, G.; Fazio, E.; Fiannacca, P.; Lo Giudice, A.; Ortolano, G.; Punturo, R.; Cirrincione, R.; de Vuono, E. Alpine metamorphism in the aspromonte massif: Implications for a new framework for the southern sector of the Calabria-Peloritani Orogen, Italy. Int. Geol. Rev. 2008, 50, 423–441. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Rubatto, D.; Visonà, D. Late Oligocene high-temperature shear zones in the core of the Higher Himalayan Crystallines (Lower Dolpo, western Nepal). Tectonics 2010, 29. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Rubatto, D.; Visonà, D. Leucogranite intruding the South Tibetan Detachment in western Nepal: Implications for exhumation models in the Himalayas. Terra Nova 2013, 25, 478–489. [Google Scholar] [CrossRef]
- Montomoli, C.; Iaccarino, S.; Carosi, R.; Langone, A.; Visonà, D. Tectonometamorphic discontinuities within the Greater Himalayan Sequence in Western Nepal (Central Himalaya): Insights on the exhumation of crystalline rocks. Tectonophysics 2013, 608, 1349–1370. [Google Scholar] [CrossRef]
- Brown, M.; Solar, G.S. Granite ascent and emplacement during contractional deformation in convergent orogens. J. Struct. Geol. 1998, 20, 1365–1393. [Google Scholar] [CrossRef]
- Florisbal, L.M.; de Assis Janasi, V.; de Fátima Bitencourt, M.; Heaman, L.M. Space–time relation of post-collisional granitic magmatism in Santa Catarina, southern Brazil: U–Pb LA-MC-ICP-MS zircon geochronology of coeval mafic–felsic magmatism related to the Major Gercino Shear Zone. Precambrian Res. 2012, 216–219, 132–151. [Google Scholar] [CrossRef]
- Florisbal, L.M.; de Bitencourt, M.F.; de Janasi, V.A.; Nardi, L.V.S.; Heaman, L.M. Petrogenesis of syntectonic granites emplaced at the transition from thrusting to transcurrent tectonics in post-collisional setting: Whole-rock and Sr–Nd–Pb isotope geochemistry in the Neoproterozoic Quatro Ilhas and Mariscal Granites, Southern Brazil. Seventh Hutton Symp. Granites Relat. Rocks 2012, 153, 53–71. [Google Scholar] [CrossRef]
- Vigneresse, J.L. Control of granite emplacement by regional deformation. Tectonophysics 1995, 249, 173–186. [Google Scholar] [CrossRef]
- Weinberg, R.F.; Sial, A.N.; Mariano, G. Close spatial relationship between plutons and shear zones. Geology 2004, 32, 377–380. [Google Scholar] [CrossRef]
- Weinberg, R.F.; Mark, G.; Reichardt, H. Magma ponding in the Karakoram shear zone, Ladakh, NW India. GSA Bull. 2009, 121, 278–285. [Google Scholar] [CrossRef]
- Bouchez, J.-L.; Hutton, D.; Stephens, E.W. Granite: From Segregation of Melt to Emplacement Fabrics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 8. [Google Scholar]
- Punturo, R.; Cirrincione, R.; Fazio, E.; Fiannacca, P.; Kern, H.; Mengel, K.; Ortolano, G.; Pezzino, A. Microstructural, compositional and petrophysical properties of mylonitic granodiorites from an extensional shear zone (Rhodope Core complex, Greece). Geol. Mag. 2014, 151, 1051–1071. [Google Scholar] [CrossRef]
- Punturo, R.; Cirrincione, R.; Fazio, E.; Fiannacca, P.; Kern, H.; Mengel, K.; Ortolano, G.; Pezzino, A. Quartz deformation mechanisms in shear zones inferred by quantitative microstructural investigation: The case study of Kavala (Rhodope Massif, north-eastern Greece). Rend. Online Soc. Geol. Ital. 2012, 21, 146–147. [Google Scholar]
- Fiannacca, P.; Williams, I.S.; Cirrincione, R. Timescales and mechanisms of batholith construction: Constraints from zircon oxygen isotopes and geochronology of the late Variscan Serre Batholith (Calabria, Southern Italy). Lithos 2017, 277, 302–314. [Google Scholar] [CrossRef]
- Burov, E.; Jolivet, L.; Le Pourhiet, L.; Poliakov, A. A thermomechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpine-type collision belts. Tectonophysics 2001, 342, 113–136. [Google Scholar] [CrossRef]
- Schulmann, K.; Kröner, A.; Hegner, E.; Wendt, I.; Konopásek, J.; Lexa, O.; Štípská, P. Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. Am. J. Sci. 2005, 305, 407–448. [Google Scholar] [CrossRef]
- Siebenaller, L.; Vanderhaeghe, O.; Jessell, M.; Boiron, M.-C.; Hibsch, C. Syntectonic fluids redistribution and circulation coupled to quartz recrystallization in the ductile crust (Naxos Island, Cyclades, Greece). J. Geodyn. 2016, 101, 129–141. [Google Scholar] [CrossRef]
- Gloaguen, E.; Branquet, Y.; Chauvet, A.; Bouchot, V.; Barbanson, L.; Vigneresse, J.-L. Tracing the magmatic/hydrothermal transition in regional low-strain zones: The role of magma dynamics in strain localization at pluton roof, implications for intrusion-related gold deposits. J. Struct. Geol. 2014, 58, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Dipple, G.M.; Ferry, J.M. Metasomatism and fluid flow in ductile fault zones. Contrib. Miner. Pet. 1992, 112, 149–164. [Google Scholar] [CrossRef]
- Bierlein, F.P.; Groves, D.I.; Goldfarb, R.J.; Dubé, B. Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Min. Depos. 2006, 40, 874. [Google Scholar] [CrossRef]
- Harlov, D.E.; Austrheim, H. Metasomatism and the Chemical Transformation of Rock: Rock-Mineral-Fluid Interaction in Terrestrial and Extraterrestrial Environments. In Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes; Harlov, D.E., Austrheim, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–16. ISBN 978-3-642-28394-9. [Google Scholar]
- Klepeis, K.A.; Daczko, N.R.; Clarke, G.L. Kinematic vorticity and tectonic significance of superposed mylonites in a major lower crustal shear zone, northern Fiordland, New Zealand. J. Struct. Geol. 1999, 21, 1385–1405. [Google Scholar] [CrossRef]
- Fazio, E.; Punturo, R.; Cirrincione, R.; Ortolano, G.; Pezzino, A. Quantitative microstructures of polycrystalline quartz aggregates in a mylonite: Implication for strain-rate evaluation. Rend. Online Soc. Geol. Ital. 2013, 29, 47–50. [Google Scholar]
- Ortolano, G.; Visalli, R.; Fazio, E.; Fiannacca, P.; Godard, G.; Pezzino, A.; Punturo, R.; Sacco, V.; Cirrincione, R. Tectono-metamorphic evolution of the Calabria continental lower crust: The case of the Sila Piccola Massif. Int. J. Earth Sci. 2020, 109, 1295–1319. [Google Scholar] [CrossRef]
- Cirrincione, R.; Fazio, E.; Ortolano, G.; Pezzino, A.; Punturo, R. Fault-related rocks: Deciphering the structural-metamorphic evolution of an accretionary wedge in a collisional belt, NE Sicily. Int. Geol. Rev. 2012, 54, 940–956. [Google Scholar] [CrossRef]
- Ortolano, G.; Fazio, E.; Visalli, R.; Alsop, G.I.; Pagano, M.; Cirrincione, R. Quantitative microstructural analysis of mylonites formed during Alpine tectonics in the western Mediterranean realm. J. Struct. Geol. 2020. [Google Scholar] [CrossRef]
- Fazio, E.; Cirrincione, R.; Pezzino, A. Estimating P-T conditions of alpine-type metamorphism using multistage garnet in the tectonic windows of the Cardeto area (southern Aspromonte Massif, Calabria). Miner. Pet. 2008, 93, 111–142. [Google Scholar] [CrossRef]
- Vignaroli, G.; Rossetti, F.; Theye, T.; Faccenna, C. Styles and regimes of orogenic thickening in the Peloritani Mountains (Sicily, Italy): New constraints on the tectono-metamorphic evolution of the Apennine belt. Geol. Mag. 2008, 145, 552–569. [Google Scholar] [CrossRef]
- Cirrincione, R.; Fazio, E.; Fiannacca, P.; Ortolano, G.; Punturo, R. Microstructural investigation of naturally deformed leucogneiss from an alpine shear zone (Southern Calabria—Italy). Pure Appl. Geophys. 2009, 166, 995–1010. [Google Scholar] [CrossRef]
- Fazio, E.; Cirrincione, R.; Pezzino, A. Garnet crystal growth in sheared metapelites (southern Calabria-Italy): Relationships between isolated porphyroblasts and coalescing euhedral crystals. Period. Miner. 2009, 78, 3–18. [Google Scholar] [CrossRef]
- Cirrincione, R.; De Vuono, E.; Fazio, E.; Fiannacca, P.; Ortolano, G.; Pezzino, A.; Punturo, R. The composite framework of the southern sector of the Calabria Peloritani Orogen. Rend. Online Soc. Geol. Ital. 2010, 11, 93–94. [Google Scholar]
- Fazio, E.; Punturo, R.; Cirrincione, R. Quartz c-axis texture mapping of mylonitic metapelite with rod structures (Calabria, southern Italy): Clues for hidden shear flow direction. J. Geol. Soc. India 2010, 75, 171–182. [Google Scholar] [CrossRef]
- Fazio, E.; Cirrincione, R.; Pezzino, A. Tectono-metamorphic map of the south-western flank of the Aspromonte Massif (southern Calabria -Italy). J. Maps 2015, 11, 85–100. [Google Scholar] [CrossRef]
- Fazio, E.; Punturo, R.; Cirrincione, R.; Kern, H.; Pezzino, A.; Wenk, H.-R.; Goswami, S.; Mamtani, M.A. Quartz preferred orientation in naturally deformed mylonitic rocks (Montalto shear zone–Italy): A comparison of results by different techniques, their advantages and limitations. Int. J. Earth Sci. 2017, 106, 2259–2278. [Google Scholar] [CrossRef]
- Rottura, A.; Bargossi, G.M.; Caironi, V.; Del Moro, A.; Maccarrone, E.; Macera, P.; Paglionico, A.; Petrini, R.; Piccarreta, G.; Poli, G. Petrogenesis of contrasting Hercynian granitoids from the Calabrian Arc, southern Italy. Lithos 1990. [Google Scholar] [CrossRef]
- Caggianelli, A.; Prosser, G.; Di Battista, P. Textural features and fabric analysis of granitoids emplaced at different depths: The example of the Hercynian tonalites and granodiorites from Calabria. Miner. Petrogr. Acta 1997, 40, 11–26. [Google Scholar]
- Caggianelli, A.; Prosser, G.; Del Moro, A. Cooling and exhumation history of deep-seated and shallow level, late Hercynian granitoids from Calabria. Geol. J. 2000, 35, 33–42. [Google Scholar] [CrossRef]
- Festa, V. C-axis fabrics of quartz-ribbons during high-temperature deformation of syn-tectonic granitoids (Sila Massif, Calabria, Italy). C. R. Geosci. 2009, 341, 557–567. [Google Scholar] [CrossRef]
- Festa, V.; Caggianelli, A.; Kruhl, J.H.; Liotta, D.; Prosser, G.; Gueguen, E.; Paglionico, A. Late-Hercynian shearing during crystallization of granitoid magmas (Sila massif, southern Italy): Regional implications. Geodin. Acta 2006, 19, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Festa, V.; Tursi, F.; Caggianelli, A.; Spiess, R. The tectono-magmatic setting of the Hercynian upper continental crust exposed in Calabria (Italy) as revealed by the 1:10,000 structural-geological map of the Levadio stream area. Ital. J. Geosci. 2018, 137, 165–174. [Google Scholar] [CrossRef]
- Festa, V.; Fornelli, A.; Paglionico, A.; Pascazio, A.; Piccarreta, G.; Spiess, R. Asynchronous extension of the late-Hercynian crust in Calabria. Tectonophysics 2012, 518, 29–43. [Google Scholar] [CrossRef]
- Liotta, D.; Festa, V.; Caggianelli, A.; Prosser, G.; Pascazio, A. Mid-crustal shear zone evolution in a syn-tectonic late Hercynian granitoid (Sila Massif, Calabria, southern Italy). Int. J. Earth Sci. 2004, 93, 400–413. [Google Scholar] [CrossRef]
- Liotta, D.; Caggianelli, A.; Kruhl, J.H.; Festa, V.; Prosser, G.; Langone, A. Multiple injections of magmas along a Hercynian mid-crustal shear zone (Sila Massif, Calabria, Italy). J. Struct. Geol. 2008, 30, 1202–1217. [Google Scholar] [CrossRef]
- De Gregorio, S.; Rotolo, S.G.; Villa, I.M. Geochronology of the medium to high-grade metamorphic units of the Peloritani Mts., Sicily. Int. J. Earth Sci. 2003, 92, 852–872. [Google Scholar] [CrossRef]
- Fiannacca, P.; Lo Pò, D.; Ortolano, G.; Cirrincione, R.; Pezzino, A. Thermodynamic modeling assisted by multivariate statistical image analysis as a tool for unraveling metamorphic P-T-d evolution: An example from ilmenite-garnet-bearing metapelite of the Peloritani Mountains, Southern Italy. Miner. Pet. 2012, 106, 151–171. [Google Scholar] [CrossRef]
- Fiannacca, P.; Basei, M.A.S.; Cirrincione, R.; Pezzino, A.; Russo, D. Water-assisted production of late-orogenic trondhjemites at magmatic and subsolidus conditions. Geol. Soc. Lond. Spec. Publ. 2020, 491, 147–178. [Google Scholar] [CrossRef]
- Graessner, T.; Schenk, V.; Bröcker, M.; Mezger, K. Geochronological constraints on the timing of granitoid magmatism, metamorphism and post-metamorphic cooling in the Hercynian crustal cross-section of Calabria. J. Metamorph. Geol. 2000, 18, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Fiannacca, P.; Williams, I.S.; Cirrincione, R.; Pezzino, A. Crustal contributions to late hercynian peraluminous magmatism in the Southern Calabria-Peloritani Orogen, Southern Italy: Petrogenetic inferences and the gondwana connection. J. Pet. 2008, 49, 1497–1514. [Google Scholar] [CrossRef] [Green Version]
- Stella, M.L.P. Petrogenesi e Geocronologia U-Th-Pb Di Rocce Granitoidi Affioranti Nel Settore Nord-Orientale Dei Monti Peloritani (Sicilia Nord-Orientale). PhD. Thesis, Catania University, Catania, Italy, 2010. [Google Scholar]
- Cirrincione, R.; Fazio, E.; Fiannacca, P.; Ortolano, G.; Pezzino, A.; Punturo, R. The Calabria-Peloritani Orogen, a composite terrane in Central Mediterranean; Its overall architecture and geodynamic significance for a pre-Alpine scenario around the Tethyan basin. Period. Miner. 2015, 84, 701–749. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Tiepolo, M.; Frassi, C. Geochronological constraints on post-collisional shear zones in the Variscides of Sardinia (Italy). Terra Nova 2012, 24, 42–51. [Google Scholar] [CrossRef]
- Corsini, M.; Rolland, Y. Late evolution of the southern European Variscan belt: Exhumation of the lower crust in a context of oblique convergence. Comptes Rendus Geosci. 2009, 341, 214–223. [Google Scholar] [CrossRef]
- Padovano, M.; Elter, F.M.; Pandeli, E.; Franceschelli, M. The East Variscan Shear Zone: New insights into its role in the Late Carboniferous collision in southern Europe. Int. Geol. Rev. 2012, 54, 957–970. [Google Scholar] [CrossRef]
- Padovano, M.; Dörr, W.; Elter, F.M.; Gerdes, A. The East Variscan Shear Zone: Geochronological constraints from the Capo Ferro area (NE Sardinia, Italy). Lithos 2014, 196–197, 27–41. [Google Scholar] [CrossRef]
- Acquafredda, P.; Lorenzoni, S.; Lorenzoni, E.Z. Palaeozoic sequences and evolution of the Calabrian-Peloritan Arc (Southern Italy). Terra Nova 1994, 6, 582–594. [Google Scholar] [CrossRef]
- Cirrincione, R.; Fiannacca, P.; Giudice, A.L.; Pezzino, A. Evidence of early Palaeozoic continental rifting from mafic metavolcanics of Southern Peloritani Mountains (north-eastern Sicily, Italy). Ofioliti 2005, 30, 15–25. [Google Scholar]
- Somma, R.; Navas-Parejo, P.; Martín-Algarra, A.; Rodríguez-Cañero, R.; Perrone, V.; Martínez-Pérez, C. Paleozoic stratigraphy of the Longi-Taormina Unit (PeloritanianMountains, southern Italy). Stratigraphy 2013, 10, 127–152. [Google Scholar]
- Ferla, P.; Meli, C. Petrogenesis of tourmaline rocks associated with Fe-carbonate-graphite metapelite, metabasite and strata-bound polymetallic sulphide mineralisation, Peloritani Mountains, Sicily, Southern Italy. Lithos 2007, 99, 266–288. [Google Scholar] [CrossRef]
- Atzori, P.; Ferla, P.; Paglionico, A.; Piccarreta, G.; Rottura, A. Remnants of the Hercynian orogen along the “Calabrian-Peloritan arc”, southern Italy: A review. J. Geol. Soc. 1984, 141, 137. [Google Scholar] [CrossRef]
- Rottura, A.; Caggianelli, A.; Campana, R.; Del Moro, A. Petrogenesis of Hercynian peraluminous granites from the Calabrian Arc, Italy. Eur. J. Miner. 1993, 5, 737–754. [Google Scholar] [CrossRef]
- Ferla, P. A model of continental crust evolution in the geological history of the Peloritani Mountains (Sicily). Mem. Soc. Geol. Ital. 2000, 55, 87–93. [Google Scholar]
- Fiannacca, P.; Brotzu, P.; Cirrincione, R.; Mazzoleni, P.; Pezzino, A. Alkali metasomatism as a process for trondhjemite genesis: Evidence from Aspromonte Unit, north-eastern Peloritani, Sicily. Miner. Pet. 2005, 84, 19–45. [Google Scholar] [CrossRef]
- Fiannacca, P.; Williams, I.S.; Cirrincione, R.; Pezzino, A. Poly-orogenic melting of metasedimentary crust from a granite geochemistry and inherited zircon perspective (southern calabria-peloritani orogen, Italy). Front. Earth Sci. 2019, 7, 199. [Google Scholar] [CrossRef]
- Fiannacca, P.; Cirrincione, R. Metasedimentary metatexites with trondhjemitic leucosomes from NE sicily: Another example of prograde water-fluxed melting in collisional belts. Geosci. Switz. 2020, 10, 123. [Google Scholar] [CrossRef] [Green Version]
- Williams, I.S.; Fiannacca, P.; Cirrincione, R.; Pezzino, A. Peri-Gondwanan origin and early geodynamic history of NE Sicily: A zircon tale from the basement of the Peloritani Mountains. Gondwana Res. 2012, 22, 855–865. [Google Scholar] [CrossRef]
- Atzori, P.; Cirrincione, R.; Del Moro, A.; Pezzino, A. Structural, metamorphic and geochronologic features of the Alpine event in the south-eastern sector of the Peloritani Mountains (Sicily). Period. Miner. 1994, 63, 113–125. [Google Scholar]
- Bonardi, G.; Compagnoni, R.; Aldo Moro, D.E.L.; Macaione, E.; Messina, A.; Perrone, V. Rb-Sr age constraints on the alpine metamorphic overprint in the aspromonte nappe (Calabria-Peloritani composite terrane, southern Italy). Ital. J. Geosci. 2008, 127, 173–190. [Google Scholar]
- Ioppolo, S.; Puglisi, G. Studio petrologico di alcune metamorfiti erciniche dei Monti Peloritani nord orientali (Sicilia). Rend. Della Soc. Ital. Miner. E Pet. 1989, 43, 643–656. [Google Scholar]
- Ortolano, G.; Cirrincione, R.; Pezzino, A. P-T evolution of Alpine metamorphism in the southern Aspromonte Massif (Calabria - Italy). Schweiz. Miner. Petrogr. Mitt. 2005, 85, 31–56. [Google Scholar]
- Ortolano, G.; Cirrincione, R.; Pezzino, A.; Tripodi, V.; Zappala, L. Petro-structural geology of the Eastern Aspromonte Massif crystalline basement (southern Italy-Calabria): An example of interoperable geo-data management from thin section—To field scale. J. Maps 2015, 11, 181–200. [Google Scholar] [CrossRef] [Green Version]
- Ortolano, G.; Visalli, R.; Cirrincione, R.; Rebay, G. PT-path reconstruction via unraveling of peculiar zoning pattern in atoll shaped garnets via image assisted analysis: An example from the Santa Lucia del Mela garnet micaschists (Northeastern Sicily-Italy). Period. Miner. 2014, 83, 257–297. [Google Scholar] [CrossRef]
- von Raumer, J.F.; Stampfli, G.M. The birth of the Rheic Ocean—Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 2008, 461, 9–20. [Google Scholar] [CrossRef] [Green Version]
- von Raumer, J.F.; Bussy, F.; Schaltegger, U.; Schulz, B.; Stampfli, G.M. Pre-Mesozoic Alpine basements—Their place in the European Paleozoic framework. GSA Bull. 2013, 125, 89–108. [Google Scholar] [CrossRef]
- Domeier, M.; Torsvik, T.H. Plate tectonics in the late Paleozoic. Geosci. Front. 2014, 5, 303–350. [Google Scholar] [CrossRef] [Green Version]
- Fiannacca, P.; Cirrincione, R.; Bonanno, F.; Carciotto, M.M. Source-inherited compositional diversity in granite batholiths: The geochemical message of Late Paleozoic intrusive magmatism in central Calabria (southern Italy). Lithos 2015, 236, 123–140. [Google Scholar] [CrossRef]
- Ayuso, R.A.; Messina, A.; De Vivo, B.; Russo, S.; Woodruff, L.G.; Sutter, J.F.; Belkin, H.E. Geochemistry and argon thermochronology of the Variscan Sila Batholith, southern Italy: Source rocks and magma evolution. Contrib. Miner. Pet. 1994, 117, 87–109. [Google Scholar] [CrossRef]
- Punturo, R.; Mamtani, M.A.; Fazio, E.; Occhipinti, R.; Renjith, A.R.; Cirrincione, R. Seismic and magnetic susceptibility anisotropy of middle-lower continental crust: Insights for their potential relationship from a study of intrusive rocks from the Serre Massif (Calabria, southern Italy). Tectonophysics 2017, 712–713, 542–556. [Google Scholar] [CrossRef]
- D’Amico, C.; Rottura, A.; Maccarrone, E.; Puglisi, G. Peraluminous granitic suite of Calabria- Peloritani arc (southern Italy). Rend. Soc. Ital. Miner. E Pet. 1982, 38, 35–52. [Google Scholar]
- Festa, V.; Langone, A.; Caggianelli, A.; Rottura, A. Dike magmatism in the Sila Grande (Calabria, southern Italy): Evidence of Pennsylvanian-Early Permian exhumation. Geosphere 2010, 6, 549–566. [Google Scholar] [CrossRef] [Green Version]
- Romano, V.; Cirrincione, R.; Fiannacca, P.; Lustrino, M.; Tranchina, A. Late-Hercynian post-collisional dyke magmatism in central Calabria (Serre Massif, southern Italy). Period. Miner. 2011, 80, 489–515. [Google Scholar] [CrossRef]
- Romano, V.; Cirrincione, R.; Fiannacca, P.; Tranchina, A.; Villa, I.M. Petrologic constraints on post-Variscan andesite dyke magmatism in the Sila Massif (northern Calabria). Rend. Online Soc. Geol. Ital. 2012, 21, 148–150. [Google Scholar]
- Barca, D.; Cirrincione, R.; De Vuono, E.; Fiannacca, P.; Ietto, F.; Lo Guidice, A. The Triassic rift system in the northern Calabrian-Peloritani Orogen: Evidence from basaltic dyke magmatism in the san donato unit. Period. Miner. 2010, 79, 61–72. [Google Scholar] [CrossRef]
- Cirrincione, R.; Fiannacca, P.; Lustrino, M.; Romano, V.; Tranchina, A. Late Triassic tholeiitic magmatism in Western Sicily: A possible extension of the Central Atlantic Magmatic Province (CAMP) in the Central Mediterranean areaα. Lithos 2014, 188, 60–71. [Google Scholar] [CrossRef]
- Cirrincione, R.; Fiannacca, P.; Lustrino, M.; Romano, V.; Tranchina, A.; Villa, I.M. Enriched asthenosphere melting beneath the nascent North African margin: Trace element and Nd isotope evidence in middle–late Triassic alkali basalts from central Sicily (Italy). Int. J. Earth Sci. 2016, 105, 595–609. [Google Scholar] [CrossRef] [Green Version]
- Atzori, P.; Vezzani, L. Lineamenti petrografico-strutturali della catena peloritana. Geol. Romana 1974, 13, 21–27. [Google Scholar]
- Lo Giudice, A.; Atzori, P.; Pezzino, A. Genesi delle masse chiare peloritane ed implicazioni sulle rocce paragneissiche. Miner. Petrogr. Acta Bologna 1985, 29, 93–117. [Google Scholar]
- Macaione, E.; Messina, A.; Bonanno, R.; Carabetta, M.T. An Itinerary through Proterozoic to holocene rocks in the north-Eastern Peloritani Mts. (southern Italy). Geol. Field Trips Maps 2010, 2, 1–98. [Google Scholar] [CrossRef]
- Atzori, P.; Del Moro, A.; Rottura, A. Rb/Sr radiometric data from medium- to high-grade metamorphic rocks (Aspromonte nappe) of the north-eastern Peloritani Mountains (Calabrian Arc), Italy. Eur. J. Miner. 1990, 2, 363–371. [Google Scholar] [CrossRef]
- Appel, P.; Cirrincione, R.; Fiannacca, P.; Pezzino, A. Age constraints on Late Paleozoic evolution of continental crust from electron microprobe dating of monazite in the Peloritani Mountains (southern Italy): Another example of resetting of monazite ages in high-grade rocks. Int. J. Earth Sci. 2010, 100, 107–123. [Google Scholar] [CrossRef]
- Bouchez, J.L.; Delas, C.; Gleizes, G.; Nedelec, A.; Cuney, M. Submagmatic microfractures in granites. Geology 1992, 20, 35–38. [Google Scholar] [CrossRef]
- Buttner, H.L. The geometric evolution of structures in granite during continous deformation from magmatic to solid-state conditions: An example from the central European Variscan Belt. Am. Miner. 1999, 84, 1781–1792. [Google Scholar] [CrossRef]
- Blenkinsop, T.G. Deformation Microstructures and Mechanisms in Minerals and Rocks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Kruhl, J.H. Prism- and basal-plane parallel subgrain boundaries in quartz: A microstructural geothermobarometer. J. Metamorph. Geol. 1996, 14, 581–589. [Google Scholar] [CrossRef]
- Guillope, M.; Poirier, J.P. Dynamic recrystallization during creep of single-crystalline halite: An experimental study. J. Geophys. Res. 1979, 84, 5557–5567. [Google Scholar] [CrossRef]
- Urai, J.L.; Means, W.D.; Lister, G.S. Dynamic Recrystallization of Minerals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Parsons, A.J.; Phillips, R.J.; Lloyd, G.E.; Law, R.D.; Searle, M.P.; Walshaw, R.D. Mid-crustal deformation of the Annapurna-Dhaulagiri Himalaya, central Nepal: An atypical example of channel flow during the Himalayan orogeny. Geosphere 2016, 12, 985–1015. [Google Scholar] [CrossRef] [Green Version]
- Passchier, C.W.; Trouw, R.A.J. Microtectonics; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 3-540-64003-7. [Google Scholar]
- Stipp, M.; Stünitz, H.; Heilbronner, R.; Schmid, S.M. The eastern Tonale fault zone: A “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. J. Struct. Geol. 2002, 24, 1861–1884. [Google Scholar] [CrossRef]
- Pawley, M.J.; Collins, W.J. The development of contrasting structures during the cooling and crystallisation of a syn-kinematic pluton. J. Struct. Geol. 2002, 24, 469–483. [Google Scholar] [CrossRef]
- Lloyd, G.E.; Freeman, B. Dynamic recrystallization of quartz under greenschist conditions. J. Struct. Geol. 1994, 16, 867–881. [Google Scholar] [CrossRef]
- Žák, J.; Verner, K.; Holub, F.V.; Kabele, P.; Chlupáčová, M.; Halodová, P. Magmatic to solid state fabrics in syntectonic granitoids recording early Carboniferous orogenic collapse in the Bohemian Massif. J. Struct. Geol. 2012, 36, 27–42. [Google Scholar] [CrossRef]
- Zibra, I.; Kruhl, J.H.; Montanini, A.; Tribuzio, R. Shearing of magma along a high-grade shear zone: Evolution of microstructures during the transition from magmatic to solid-state flow. J. Struct. Geol. 2012, 37, 150–160. [Google Scholar] [CrossRef]
- Gapais, D.; Barbarin, B. Quartz fabric transition in a cooling syntectonic granite (Hermitage Massif, France). Tectonophysics 1986, 125, 357–370. [Google Scholar] [CrossRef]
- Zibra, I.; Kruhl, J.H.; Braga, R. Late Palaeozoic deformation of post-Variscan lower crust: Shear zone widening due to strain localization during retrograde shearing. Int. J. Earth Sci. 2010, 99, 973–991. [Google Scholar] [CrossRef]
- Menegon, L.; Nasipuri, P.; Stünitz, H.; Behrens, H.; Ravna, E. Dry and strong quartz during deformation of the lower crust in the presence of melt. J. Geophys. Res. Solid Earth 2011, 116, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Law, R.D. Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review. J. Struct. Geol. 2014, 66, 129–161. [Google Scholar] [CrossRef]
- Paterson, S.R.; Fowler, T.K.; Schmidt, K.L.; Yoshinobu, A.S.; Yuan, E.S.; Miller, R.B. Interpreting magmatic fabric patterns in plutons. Lithos 1998, 44, 53–82. [Google Scholar] [CrossRef]
- Paterson, S.R.; Ardill, K.; Vernon, R.; Žák, J. A review of mesoscopic magmatic structures and their potential for evaluating the hypersolidus evolution of intrusive complexes. Back Future 2019, 125, 134–147. [Google Scholar] [CrossRef]
- Mamtani, M.A.; Greiling, R.O. Serrated quartz grain boundaries, temperature and strain rate: Testing fractal techniques in a syntectonic granite. Geol. Soc. Lond. Spec. Publ. 2010, 332, 35. [Google Scholar] [CrossRef]
- Angì, G.; Cirrincione, R.; Fazio, E.; Fiannacca, P.; Ortolano, G.; Pezzino, A. Metamorphic evolution of preserved Hercynian crustal section in the Serre Massif (Calabria-Peloritani Orogen, southern Italy). Lithos 2010, 115, 237–262. [Google Scholar] [CrossRef]
- Caggianelli, A.; Liotta, D.; Prosser, G.; Ranalli, G. Pressure–temperature evolution of the late Hercynian Calabria continental crust: Compatibility with post-collisional extensional tectonics. Terra Nova 2007, 19, 502–514. [Google Scholar] [CrossRef]
- Pereira, M.F.; Silva, J.B.; Drost, K.; Chichorro, M.; Apraiz, A. Relative timing of transcurrent displacements in northern Gondwana: U–Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberian Massif (Portugal). Rheic Ocean. Palaeoz. Evol. Gondwana Laurussia Pangaea 2010, 17, 461–481. [Google Scholar] [CrossRef]
- Gretter, N.; Ronchi, A.; Lopez-Gòmez, J.L.; Arche, A.; De la Horra, R.; Barrenechea, J.; Lago, M. The Late Paleozoic-Early Mesozoic from the Catalan Pyrenees (Spain): 60 Myr of environmental evolution in the frame of the western peri-Tethyan paleogeography. Earth Sci. Rev. 2015, 150, 679–708. [Google Scholar] [CrossRef]
- Tartèse, R.; Boulvais, P.; Poujol, M.; Chevalier, T.; Paquette, J.-L.; Ireland, T.R.; Deloule, E. Mylonites of the South Armorican Shear Zone: Insights for crustal-scale fluid flow and water–rock interaction processes. Geodyn. Orogenesis 2012, 56–57, 86–107. [Google Scholar] [CrossRef]
- Scheck, M.; Bayer, U.; Otto, V.; Lamarche, J.; Banka, D.; Pharaoh, T. The Elbe Fault System in North Central Europe—A basement controlled zone of crustal weakness. Tectonophysics 2002, 360, 281–299. [Google Scholar] [CrossRef]
- Bouaziz, S.; Barrier, E.; Soussi, M.; Turki, M.M.; Zouari, H. Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 2002, 357, 227–253. [Google Scholar] [CrossRef]
- Stampfli, G.M.; Borel, G.D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 2002, 196, 17–33. [Google Scholar] [CrossRef]
- Stamfli, G.M.; Kozur, H.W. Europe from the Variscan to the Alpine cycles. Geol. Soc. Lond. Mem. 2006, 32, 57. [Google Scholar] [CrossRef]
- von Raumer, J.F.; Bussy, F.; Stampfli, G.M. The Variscan evolution in the External massifs of the Alps and place in their Variscan framework. Mécanique Orogénie Varisque Une Vis. Mod. Rech. Dans Domaine Orogénie 2009, 341, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Elter, F.M.; Padovano, M. Discussion of “Deformation during exhumation of medium- and high-grade metamorphic rocks in the Variscan Chain in Northern Sardinia (Italy)” by Carosi R., Frassi C., Montomoli C., (2009). Geol. J. 2010, 45, 481–482. [Google Scholar] [CrossRef]
- Simonetti, M.; Carosi, R.; Montomoli, C.; Corsini, M.; Petroccia, A.; Cottle, J.M.; Iaccarino, S. Timing and kinematics of flow in a transpressive dextral shear zone, Maures Massif (Southern France). Int. J. Earth Sci. 2020. [Google Scholar] [CrossRef]
- Simonetti, M.; Carosi, R.; Montomoli, C.; Cottle, J.M.; Law, R.D. Transpressive Deformation in the Southern European Variscan Belt: New Insights From the Aiguilles Rouges Massif (Western Alps). Tectonics 2020, 39, e2020TC006153. [Google Scholar] [CrossRef]
- Catalano, S.; Cirrincione, R.; Mazzoleni, P.; Pavano, F.; Pezzino, A.; Romagnoli, G.; Tortorici, G. The effects of a Meso-Alpine collision event on the tectono-metamorphic evolution of the Peloritani mountain belt (eastern Sicily, southern Italy). Geol. Mag. 2018, 155, 422–437. [Google Scholar] [CrossRef] [Green Version]
- Micheletti, F.; Fornelli, A.; Piccarreta, G.; Barbey, P.; Tiepolo, M. The basement of Calabria (southern Italy) within the context of the Southern European Variscides: LA-ICPMS and SIMS U–Pb zircon study. Lithos 2008, 104, 1–11. [Google Scholar] [CrossRef]
- Fiannacca, P.; Williams, I.S.; Cirrincione, R.; Pezzino, A. The augen gneisses of the Peloritani Mountains (NE Sicily): Granitoid magma production during rapid evolution of the northern Gondwana margin at the end of the Precambrian. Gondwana Res. 2013, 23, 782–796. [Google Scholar] [CrossRef]
- Langone, A.; Caggianelli, A.; Festa, V.; Prosser, G. Time Constraints on the Building of the Serre Batholith: Consequences for the Thermal Evolution of the Hercynian Continental Crust Exposed in Calabria (Southern Italy). J. Geol. 2014, 122, 183–199. [Google Scholar] [CrossRef]
- Del Moro, A.; Pardini, G.; Maccarrone, E.; Rottura, A. Studio radiometrico Rb-Sr di granitoidi peraluminosi dell’arco calabro-peloritano. Rend. Soc. Ital. Miner. E Pet. 1982, 38, 1015–1026. [Google Scholar]
- Cavalcante, C.; Lagoeiro, L.; Fossen, H.; Egydio-Silva, M.; Morales, L.F.G.; Ferreira, F.; Conte, T. Temperature constraints on microfabric patterns in quartzofeldsphatic mylonites, Ribeira belt (SE Brazil). J. Struct. Geol. 2018, 115, 243–262. [Google Scholar] [CrossRef]
- Burov, E.; Jaupart, C.; Guillou-Frottier, L. Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Burov, E.B. Rheology and strength of the lithosphere. Mar. Pet. Geol. 2011, 28, 1402–1443. [Google Scholar] [CrossRef]
- Morgan, G.B.; London, D. Process of granophyre crystallization in the Long Mountain Granite, southern Oklahoma. GSA Bull. 2012, 124, 1251–1261. [Google Scholar] [CrossRef]
- London, D.; Hunt, L.E.; Schwing, C.R.; Guttery, B.M. Feldspar thermometry in pegmatites: Truth and consequences. Contrib. Miner. Pet. 2019, 175, 8. [Google Scholar] [CrossRef]
- Hutton, D.H.W. Granite emplacement mechanisms and tectonic controls: Inferences from deformation studies. Trans. R. Soc. Edinb. Earth Sci. 1988, 79, 245–255. [Google Scholar] [CrossRef]
- Neves, S.P.; Vauchez, A.; Archanjo, C.J. Shear zone-controlled magma emplacement or magma-assisted nucleation of shear zones? Insights from northeast Brazil. Kimberl. Struct. Cratonic Lithosphere 1996, 262, 349–364. [Google Scholar] [CrossRef]
- Tursi, F.; Spiess, R.; Festa, V.; Fregola, R.A. Hercynian subduction-related processes within the metamorphic continental crust in Calabria (southern Italy). J. Metamorph. Geol. 2020. [Google Scholar] [CrossRef]
- Rosenberg, C.L. Deformation of partially molten granite: A review and comparison of experimental and natural case studies. Int. J. Earth Sci. 2001, 90, 60–76. [Google Scholar] [CrossRef]
- Tullis, J.; Yund, R.A. Diffusion creep in feldspar aggregates: Experimental evidence. J. Struct. Geol. 1991, 13, 987–1000. [Google Scholar] [CrossRef]
- Fitz Gerald, J.D.; Harrison, T.M. Argon diffusion domains in K-feldspar I: Microstructures in MH-10. Contrib. Miner. Pet. 1993, 113, 367–380. [Google Scholar] [CrossRef]
- Altenberger, U.; Wilhelm, S. Ductile deformation of K-feldspar in dry eclogite facies shear zones in the Bergen Arcs, Norway. Tectonophysics 2000, 320, 107–121. [Google Scholar] [CrossRef]
- Rosenberg, C.L.; Stünitz, H. Deformation and recrystallization of plagioclase along a temperature gradient: An example from the Bergell tonalite. J. Struct. Geol. 2003, 25, 389–408. [Google Scholar] [CrossRef]
- Pennacchioni, G.; Menegon, L.; Leiss, B.; Nestola, F.; Bromiley, G. Development of crystallographic preferred orientation and microstructure during plastic deformation of natural coarse-grained quartz veins. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazio, E.; Fiannacca, P.; Russo, D.; Cirrincione, R. Submagmatic to Solid-State Deformation Microstructures Recorded in Cooling Granitoids during Exhumation of Late-Variscan Crust in North-Eastern Sicily. Geosciences 2020, 10, 311. https://doi.org/10.3390/geosciences10080311
Fazio E, Fiannacca P, Russo D, Cirrincione R. Submagmatic to Solid-State Deformation Microstructures Recorded in Cooling Granitoids during Exhumation of Late-Variscan Crust in North-Eastern Sicily. Geosciences. 2020; 10(8):311. https://doi.org/10.3390/geosciences10080311
Chicago/Turabian StyleFazio, Eugenio, Patrizia Fiannacca, Damiano Russo, and Rosolino Cirrincione. 2020. "Submagmatic to Solid-State Deformation Microstructures Recorded in Cooling Granitoids during Exhumation of Late-Variscan Crust in North-Eastern Sicily" Geosciences 10, no. 8: 311. https://doi.org/10.3390/geosciences10080311
APA StyleFazio, E., Fiannacca, P., Russo, D., & Cirrincione, R. (2020). Submagmatic to Solid-State Deformation Microstructures Recorded in Cooling Granitoids during Exhumation of Late-Variscan Crust in North-Eastern Sicily. Geosciences, 10(8), 311. https://doi.org/10.3390/geosciences10080311