Analysis of the Influence of Structural Geology on the Massive Seismic Slope Failure Potential Supported by Numerical Modelling
Abstract
:1. Introduction
2. Geological Context of Studied Rockslides
2.1. Rockslides in the European Alps: Historical Examples of Earthquake-Triggered Mass Movements
2.2. Rockslides in the Se Carpathians: Historical Examples of Earthquake-Triggered Mass Movements
2.3. Typical Large Rockslides Triggered by Earthquakes in the Tien Shan
3. 3D Views and 3D Geomodels of Studied Rockslides
3.1. Geomodel of the Tamins Rockslide
3.2. 3D Views of the Fernpass Rock Avalanche
3.3. Geomodel of the Eagle’S Lake Rockslide
3.4. Geomodel of the Balta Rockslide
4. Static and Dynamic 2D Numerical Models of the Balta Rockslide
4.1. Modelled Slope Morphologies and Rock Structures
4.2. Static Analysis of the 2D Balta Models
4.3. Dynamic Analysis of the 2D Balta Models
5. Discussion
5.1. Influence of Slope Versus Orientation of Discontinuity on Slope Stability
5.2. Specific Deformation Patterns of Seismically-Induced Rock Slope Failure
5.3. Tamins, Fernpass, Balta, and Eagle’s Lake Rockslides—Seismically Triggered?
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
RS Name | Location | Failure Date | Volume [m] | Rock Type | Structural Predisposition | Scarp Geometry/Failure Type | Visited and/or Google Earth | Seismic Trigger Category | Magnitude | References |
---|---|---|---|---|---|---|---|---|---|---|
Tamins | Switzerland | >8 ka BP | 1500 | sed. | joint sets outline wedge-failure geometry | ’amphitheatre’/from top | V | very uncertain | none | Poschinger et al. [22] |
Saymareh | Iran | >8 ka BP | >10,000 | sed. | dip-slope on anticline limb (<15 slope) | wide and high scarp/from top | GE | likely | likely > 7.5 | Howells [69] |
Fernpass | Austria | 4.2 ka BP | 1000 | sed. | along-strike failure | ’amphitheatre’/from top | V & GE | possible | likely < 7 | Prager et al. [16] |
Oeschinen See | Switzerland | 2.4 ka BP? | 30 | sed. | dip-slope failure | wide and high scarp/from mid-slope | GE | possible | likely < 7 | Köpfli et al. [70] |
Diexi | China | >1000 years (react. In 1933) | >1000 | sed. | along-strike failure | multiple deep-seated wedges/from top | V & GE | seismic reactivation confirmed, initial seismic triggering very likely | likely > 7.5 | Fan et al. [71] |
Kokomeren | Kyrgyzstan | >1000 years | >1000 | sed & metam. -magm. | anti-dip slope | wide and high scarp/from top | V & GE | likely | likely > 7 | Strom [72] |
Balta | Romania | >1000 years | 30 | sed. | anti-dip slope | ’amphitheatre’/starting from mountain crest end | V | unknown | likely > 7.5 | Mreyen et al. [43] |
Eagle’s Lake | Romania | >1000 years | 8 | sed. | anti-dip slope | wide scarp, from top | V | unknown | likely > 7.5 | Mreyen et al. [43] |
Karasuu | Kyrgyzstan | >1000 years | 150 | sed. | anti-dip slope | multiple deep-seated scarps, from mountain crest end | GE | likely | likely > 7 | Korzhenkov et al. [53] |
Dobratsch Mtn (6 RS) | Italy | 1348 | 30 | sed. | wide and high scarp, from top | GE | confirmed | 6.9 | Lenhardt [18] | |
Tour d’Ai | Switzerland | 1584 | 10? | sed. | subhorizontal bedding | deep-seatd scarp, from top | V & GE | confirmed | 6.5 | Fritsche et al. [19] |
Ananevo | Kyrgyzstan | 1911 | 15 | metam.- magma. | no favourably dipping from top | wide scarp, from mountain crest end | V | confirmed | 7.8 | Havenith et al. [46] |
Rawilhorn | Switzerland | 1946 | 12 | sed. | subhorizontal bedding | wide and high scarp, from top | V & GE | confirmed | 6.1 | Moore et al. [73] |
Khait | Tadjikistan | 1949 | metam.- magma. | no favourably dipping joints/foliation | wide and high scarp, from top | V | confirmed | 7.4 | Evans et al. [74] & Havenith et al. [47] | |
Lituya Bay | Alaska | 1958 | 30 | metam.- magma. | dip-slope/toppling failure (high angle dip of foliation) | wedge-like, from slope break | GE | confirmed | 7.8 | Fritz et al. [75] |
Nevados Huascaran | Peru | 1970 (1962) | >50 | volcanic? | dip-slope failure (explaining also 1962 event) | deep-seatd wedge, from top | GE | confirmed | 7.8 | Cluff [76] |
Belaldy | Kyrgyzstan | 1992 | 40 | metam.- magma. | favourably oriented foliation | wide and high scarp, from top | V & GE | confirmed | 7.2 | Havenith et al. [47] |
Hattian Bala | Pakistan | 2005 | 100 | sed. | along plunging syncline axis | wide wedge failure, high scarp, from top | GE | confirmed | 7.6 | Basharat et al. [77] |
Daguanbao | China | 2008 | >1000 | metam.- magma. | along-strike failure | ’amphitheatre’/from top | V & GE | confirmed | 7.9 | Cui et al. [13] |
Wenjiagou | China | 2008 | >100 | sed. | dip-slope failure | wide and high scarp, from top | V & GE | confirmed | 7.9 | Fan et al. [71] |
Appendix B
Appendix C
Appendix D
Appendix E
References
- Heim, A. Bergsturz und Menschenleben; Beiblatt zur Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich; Fretz & Wasmuth: Zürich, Switzerland, 1932. [Google Scholar]
- Abele, G. Bergstürze in den Alpen: Ihre Verbreitung, Morphologie und Folgeerscheinungen. In Wissenschaftliche Alpenvereinshefte; Dt. Alpenverein, Ed.; 1974; Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM7920324796 (accessed on 18 August 2020).
- Korup, O. Geomorphometric characteristics of New Zealand landslide dams. Eng. Geol. 2004, 73, 13–35. [Google Scholar] [CrossRef]
- Hewitt, K. Rock avalanches that travel onto glaciers and related developments, Karakoram Himalaya, Inner Asia. Geomorphology 2009, 103, 66–79. [Google Scholar] [CrossRef]
- Strom, A.; Abdrakhmatov, K. Rockslides and Rock Avalanches of Central Asia: Distribution, Morphology, and Internal Structure; Candice Janco: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Jaboyedoff, M.; Carrea, D.; Derron, M.H.; Oppikofer, T.; Penna, I.M.; Rudaz, B. A review of methods used to estimate initial landslide failure surface depths and volumes. Eng. Geol. 2020, 267, 105478. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope movement types and processes. Spec. Rep. 1978, 176, 11–33. [Google Scholar]
- Cruden, D.M. A simple definition of a landslide. Bull. Int. Assoc. Eng. Geol.-Bull. De L’Association Int. De Géologie De L’Ingénieur 1991, 43, 27–29. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslides: Investigation and mitigation. Chapter 3-Landslide types and processes. In Transportation Research Board Special Report; Transportation Research Board: Washington, DC, USA, 1996. [Google Scholar]
- Davies, T.; McSaveney, M. Rock-Avalanche Size and Runout–Implications for Landslide Dams. In Natural and Artificial Rockslide Dams; Springer: Berlin/Heidelberg, Germany, 2010; pp. 441–462. [Google Scholar] [CrossRef]
- Korup, O.; Clague, J.J.; Hermanns, R.L.; Hewitt, K.; Strom, A.L.; Weidinger, J.T. Giant landslides, topography, and erosion. Earth Planet. Sci. Lett. 2007, 261, 578–589. [Google Scholar] [CrossRef]
- Keefer, D.K. Landslides caused by earthquakes. GSA Bull. 1984, 95, 406–421. [Google Scholar] [CrossRef]
- Cui, S.; Pei, X.; Huang, R. Effects of geological and tectonic characteristics on the earthquake-triggered Daguangbao landslide, China. Landslides 2018, 15, 649–667. [Google Scholar] [CrossRef]
- Keefer, D.K. Statistical analysis of an earthquake-induced landslide distribution—The 1989 Loma Prieta, California event. Eng. Geol. 2000, 58, 231–249. [Google Scholar] [CrossRef]
- Parise, M.; Jibson, R.W. A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Eng. Geol. 2000, 58, 251–270. [Google Scholar] [CrossRef]
- Prager, C.; Zangerl, C.; Patzelt, G.; Brandner, R. Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Nat. Hazards Earth Syst. Sci. 2008, 8, 377–407. [Google Scholar] [CrossRef]
- Wiemer, S.; Danciu, L.; Edwards, B.; Marti, M.; Fäh, D.; Hiemer, S.; Wössner, J.; Cauzzi, C.; Kästli, P.; Kremer, K. Seismic Hazard Model 2015 for Switzerland (SUIhaz2015); Technical Report; ETH: Zurich, Switzerland, 2016. [Google Scholar] [CrossRef]
- Lenhardt, W. Earthquake-triggered landslides in Austria–Dobratsch revisited. Jahrb. Geol. Bundesanst. 2007, 147, 193–199. [Google Scholar]
- Fritsche, S.; Fäh, D.; Schwarz-Zanetti, G. Historical intensity VIII earthquakes along the Rhone valley (Valais, Switzerland): Primary and secondary effects. Swiss J. Geosci. 2012, 105, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Badoux, A.; Andres, N.; Techel, F.; Hegg, C. Natural hazard fatalities in Switzerland from 1946 to 2015. Nat. Hazards Earth Syst. Sci. 2016, 16, 2747–2768. [Google Scholar] [CrossRef] [Green Version]
- Lateltin, O.; Haemmig, C.; Raetzo, H.; Bonnard, C. Landslide risk management in Switzerland. Landslides 2005, 2, 313–320. [Google Scholar] [CrossRef]
- Poschinger, A.V.; Wassmer, P.; Maisch, M. the Flims Rockslide: History of interpretation and new insights. In Landslides from Massive Rock Slope Failure; Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 329–356. [Google Scholar]
- Poschinger, A.V. The Flims Rockslide Dam. In Natural and Artificial Rockslide Dams; Evans, S.G., Hermanns, R.L., Strom, A., Scarascia-Mugnozza, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 407–421. [Google Scholar] [CrossRef]
- Pollet, N.; Cojean, R.; Couture, R.; Schneider, J.L.; Strom, A.L.; Voirin, C.; Wassmer, P. A slab-on-slab model for the Flims rockslide (Swiss Alps). Can. Geotech. J. 2005, 42, 587–600. [Google Scholar] [CrossRef]
- Krietsch, H.; Wolter, A. Preliminary forensic investigation of the structural and geomorphological controls on the prehistoric Tamins rockslide in Grisons, Switzerland. In Landslides and Engineered Slopes. Experience, Theory and Practice; CRC Press: Boca Raton, FL, USA, 2016; pp. 1205–1210. [Google Scholar] [CrossRef]
- Poschinger, A.V.; Haas, U. Der Flimser Bergsturz, doch ein warmzeitliches Ereignis? Bull. Angew. Geol. 1997, 2, 35–46. [Google Scholar]
- Deplazes, G.; Anselmetti, F.S.; Hajdas, I. Lake sediments deposited on the Flims rockslide mass: The key to date the largest mass movement of the Alps. Terra Nova 2007, 19, 252–258. [Google Scholar] [CrossRef]
- Ivy-Ochs, S.; Poschinger, A.; Synal, H.A.; Maisch, M. Surface exposure dating of the Flims landslide, Graubünden, Switzerland. Geomorphology 2009, 103, 104–112. [Google Scholar] [CrossRef]
- Hetényi, G.; Epard, J.L.; Colavitti, L.; Hirzel, A.H.; Kiss, D.; Petri, B.; Scarponi, M.; Schmalholz, S.M.; Subedi, S. Spatial relation of surface faults and crustal seismicity: A first comparison in the region of Switzerland. Acta Geodaetica Geophysica 2018, 53, 439–461. [Google Scholar] [CrossRef] [Green Version]
- Ostermann, M.; Prager, C. Field Trip 12-Large-scale catastrophic rock slope failures in the Ötz-Inn-Loisach Valley region. Geo. Alp 2016, 13, 2257–2276. [Google Scholar]
- Prager, C. Geologie, Alter und Struktur des Fernpass Bergsturzes und tiefgründige Massenbewegungen in seiner Umgebung (Tirol, Österreich). Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria, 2010. [Google Scholar]
- Mârza, V.; Pantea, A. Romania. History of earthquake hazards assessment. In Stop Disaster, the Newsletter of the International Decade for Natural Disaster Reduction; International Decade for Natural Disaster Reduction: Naples, Italy, 1991. [Google Scholar]
- Bălteanu, D.; Chendeş, V.; Sima, M.; Enciu, P. A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology 2010, 124, 102–112. [Google Scholar] [CrossRef]
- Micu, M. Landslide Types and Spatial Pattern in the Subcarpathian Area. In Landform Dynamics and Evolution in Romania; Springer: Berlin/Heidelberg, Germany, 2017; pp. 305–325. [Google Scholar]
- Georgescu, E. the partial collapse of Coltzea Tower during the Vrancea earthquake of 14/26 october 1802: The historical warning of long-period ground motions site effects in Bucharest. In Proceedings of the International Conference Earthquake Loss Estimation and Risk Reduction, Bucarest, Romania, 24–26 October 2002. [Google Scholar]
- Vacareanu, R.; Ionescu, C. The 1940 Vrancea Earthquake. Issues, Insights and Lessons Learnt: Proceedings of the Symposium Commemorating 75 Years from November 10, 1940 Vrancea Earthquake; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Rogozea, M.; Marmureanu, G.; Radulian, M.; Toma, D. Reevaluation of the macroseismic effects of the 23 January 1838 Vrancea earthquake. Rom. Rep. Phys. 2014, 66, 520–538. [Google Scholar]
- Mândrescu, N. The Romanian earthquake of March 4, 1977; aspects of soil behaviour. Revue Roumaine Géologie Géophysique Géographie Géophysique 1981, 25, 35–56. [Google Scholar]
- Radulescu, N.A. Considérations géographiques sur le tremblement de terre du 10 November 1940. Comptes Rendus Séances LAcadémie Des Sciences Roumanie 1941, 5, 243–269. [Google Scholar]
- Radu, C.; Spânoche, E. On geological phenomena associated with the 10 November 1940 earthquake. Revenue Romanian Geology Geophysics Geographic.–Geophysique 1977, 21, 159–165. [Google Scholar]
- Georgescu, E.S.; Pomonis, A. Building damage vs. territorial casualty patterns during the Vrancea (Romania) earthquakes of 1940 and 1977. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012; pp. 24–28. [Google Scholar]
- Harta geologica 1:200000, f.C. Geologic Map 1:200000, Covasna Sheet; Geological Institute of Romania: Bucharest, Romania, 1968. [Google Scholar]
- Mreyen, A.S.; Micu, M.; Onaca, A.; Cerfontaine, P.; Havenith, H.B. Integrated Geological-Geophysical Models of Unstable Slopes in Seismic Areas. In Advancing Culture of Living with Landslides; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 269–279. [Google Scholar] [CrossRef]
- Naum, T. Observaţiuni Geomorfologice în Masivul Siriu; Number 13; Analele University C.I. Parhon: Bucarest, Romania, 1957. [Google Scholar]
- Sîrcu, I. Câteva precizări în legătură cu glaciaţia cuaternară din Carpaţii Orientali Româneşti. Nat. Ser. Geol.-Geogr. 1964, 3, 24–31. [Google Scholar]
- Havenith, H.B.; Strom, A.; Jongmans, D.; Abdrakhmatov, A.; Delvaux, D.; Tréfois, P. Seismic triggering of landslides, Part A: Field evidence from the Northern Tien Shan. Nat. Hazards Earth Syst. Sci. 2003, 3, 135–149. [Google Scholar] [CrossRef]
- Havenith, H.B.; Bourdeau, C. Earthquake-induced landslide hazards in mountain regions: A review of case histories from central asia (An inaugural lecture to the society). Geol. Belg. 2010, 13, 137–152. [Google Scholar]
- Ignatiev, I. Earthquake in the Tokmak district in 1885. In Proc. Imp. Russ. Geogr. Soc. 1886, 22, 150–164. [Google Scholar]
- Havenith, H.B.; Jongmans, D.; Faccioli, E.; Abdrakhmatov, K.; Bard, P.Y. Site Effect Analysis around the Seismically Induced Ananevo Rockslide, Kyrgyzstan. Bull. Seismol. Soc. Am. 2002, 92, 3190–3209. [Google Scholar] [CrossRef]
- Havenith, H.B.; Strom, A.; Calvetti, F.; Jongmans, D. Seismic triggering of landslides. Part B: Simulation of dynamic failure processes. Nat. Hazards Earth Syst. Sci. 2003, 3, 663–682. [Google Scholar] [CrossRef]
- Ghose, S.; Mellors, R.J.; Korjenkov, A.M.; Hamburger, M.W.; Pavlis, T.L.; Pavlis, G.L.; Omuraliev, M.; Mamyrov, E.; Muraliev, A.R. the MS = 7.3 1992 Suusamyr, Kyrgyzstan, earthquake in the tien shan: 2. Aftershock focal mechanisms and surface deformation. Bull. Seismol. Soc. Am. 1997, 87, 23–38. [Google Scholar]
- Korjenkov, A.; Rust, D.; Tibaldi, A.; Abdiev, S. Parameters of the Strong Paleoearthquakes Along the Talas-Fergana Fault, the Kyrgyz Tien Shan. In Earthquake Research and Analysis - Seismology, Seismotectonic and Earthquake Geology; D’Amico, S., Ed.; InTech: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Korzhenkov, A.; Abdieva, S.; Belousov, T.; Rust, D.; Tibaldi, A. An age of rockslides and paleoearthquakes in the Karasu River valley (Talas-Fergana Fault, Kyrgyzstan). Seism. Instrum. 2014, 50, 97–108. [Google Scholar] [CrossRef]
- Belousov, T.; Skobelev, S.; Strom, A. On estimation of the recurrence period of strong earthquakes of the central Tien Shan (according to data of absolute geochronology). J. Earthq. Predict. Res. 1994, 3, 226–236. [Google Scholar]
- Havenith, H.; Strom, A.; Torgoev, I.; Torgoev, A.; Lamair, L.; Ischuk, A.; Abdrakhmatov, K. Tien Shan Geohazards Database: Earthquakes and landslides. Geomorphology 2015, 249, 16–31. [Google Scholar] [CrossRef]
- Davis, G.H.; Reynolds, S. Structural Geology of Rocks and Regions, 2nd, ed.; JohnWiley & Sons: Hoboken, NJ, USA, 1996; p. 776. [Google Scholar]
- Aber, J.; Ber, A. Glaciotectonism. In Developments in Quaternary Sciences; van der Meer, J.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; Chapter 2; Volume 6, pp. 17–32. [Google Scholar] [CrossRef]
- Love, J.J. Fisher Statistics. In Encyclopedia of Geomagnetism and Paleomagnetism; Springer: Dordrecht, The Netherlands, 2007; pp. 272–273. [Google Scholar] [CrossRef]
- Allmendinger, R.W. Stereonet Mobile for iOS v. 3.0. 2017. Available online: http://www.geo.cornell.edu/geology/faculty/RWA/programs/stereonet-mobile-manual.pdf (accessed on 18 August 2020).
- Micu, M.; Havenith, H.B.; Bălteanu, D.; Onaca, A.; Mreyen, A.S.; Cioflan, C. Certain and potential earthquake-induced landslides in Vrancea seismic region. In Proceedings of the 33rd Romanian Geomorphology Symposium, Iași, Romania, 11–14 May 2017. [Google Scholar] [CrossRef]
- Pal, S.; Kaynia, A.M.; Bhasin, R.K.; Paul, D. Earthquake stability analysis of rock slopes: A case study. Rock Mech. Rock Eng. 2012, 45, 205–215. [Google Scholar] [CrossRef]
- Li, L.Q.; Ju, N.P.; Zhang, S.; Deng, X.X.; Sheng, D. Seismic wave propagation characteristic and its effects on the failure of steep jointed anti-dip rock slope. Landslides 2019, 16, 105–123. [Google Scholar] [CrossRef]
- Mreyen, A.S.; Cauchie, L.; Micu, M.; Onaca, A.; Havenith, H.B. Multiple geophysical investigation to characterize massive slope failure deposits: Application to the Balta rockslide, Carpathians. Geophys. J. Int. submitted.
- Jaboyedoff, M.; Chigira, M.; Arai, N.; Derron, M.H.; Rudaz, B.; Tsou, C.Y. Testing a failure surface prediction and deposit reconstruction method for a landslide cluster that occurred during Typhoon Talas (Japan). Earth Surf. Dyn. 2019, 7, 439–458. [Google Scholar] [CrossRef] [Green Version]
- Biggs, J. Introduction to Structural Dynamics; McGraw-Hill College: New York, NY, USA, 1964. [Google Scholar]
- Glastonbury, J.; Fell, R. Geotechnical characteristics of large rapid rock slides. Can. Geotech. J. 2010, 47, 116–132. [Google Scholar] [CrossRef]
- Majdi, A.; Amini, M. Flexural Toppling Failure in Rock Slopes: From Theory to Applications. Int. J. Min.-Geo 2011, 45, 21–32. [Google Scholar]
- Meunier, P.; Hovius, N.; Haines, J.A. Topographic site effects and the location of earthquake induced landslides. Earth Planet. Sci. Lett. 2008, 275, 221–232. [Google Scholar] [CrossRef]
- Howells, D.A. A history of Persian earthquakes, by N. N. Ambraseys and C. P. Melville, Cambridge University Press, Cambridge, 1982. No. of pages: 219. Price: £35. Earthq. Eng. Struct. Dyn. 1983, 11, 591. [Google Scholar] [CrossRef]
- Köpfli, P.; Grämiger, L.M.; Moore, J.R.; Vockenhuber, C.; Ivy-Ochs, S. the Oeschinensee rock avalanche, Bernese Alps, Switzerland: A co-seismic failure 2300 years ago? Swiss J. Geosci. 2018, 111, 205–219. [Google Scholar] [CrossRef]
- Fan, X.; Yunus, A.P.; Jansen, J.D.; Dai, L.; Strom, A.; Xu, Q. Comment on ‘Gigantic rockslides induced by fluvial incision in the Diexi area along the eastern margin of the Tibetan Plateau. Geomorphology 2019, 338, 27–42. [Google Scholar] [CrossRef]
- Strom, A. Mechanism of stratification and abnormal crushing of rockslide deposits. In Proceedings of the 7th International Association for Engineering Geology Congress, Lisboa, Portugal, 5–9 September 1994; Balkema: Rotterdam, The Netherlands, 1994. [Google Scholar]
- Moore, J.; Gischig, V.; Amann, F.; Burjanek, J. Earthquake-triggered rock slope failures: Damage and site effects. In Proceedings of the 11th International & 2nd North American Symposium on Landslides, Banff, AB, Canada, 2–8 June 2012. [Google Scholar]
- Evans, S.; Roberts, N.; Ischuk, A.; Delaney, K.; Morozova, G.; Tutubalina, O. Landslides triggered by the 1949 Khait earthquake, Tajikistan, and associated loss of life. Eng. Geol. 2009, 109, 195–212. [Google Scholar] [CrossRef]
- Fritz, H.; Hager, W.; Minor, H.E. Lituya Bay case: Rockslide impact and wave run-up. Sci. Tsunami Hazards 2001, 19, 3–19. [Google Scholar]
- Cluff, L.S. Peru earthquake of May 31, 1970; engineering geology observations. Bull. Seismol. Soc. Am. 1971, 61, 511–533. [Google Scholar]
- Basharat, M.; Rohn, J.; Ehret, D.; Baig, M.S. Lithological and structural control of Hattian Bala rock avalanche triggered by the Kashmir earthquake 2005, sub-Himalayas, northern Pakistan. J. Earth Sci. 2012, 23, 213–224. [Google Scholar] [CrossRef]
Age [cal ka BP] | Method | Reference |
---|---|---|
8210–10,100 cal yrs BP | C of tree trunks below landslide | Poschinger and Haas [26] |
boulders at the deposit edge | Deplazes et al. [27] | |
8400–9050 cal yrs BP | C of supra-landslide lake deposit | Deplazes et al. [27] |
8200–9520 cal yrs BP | Cl and Be exposure dating of | Ivy-Ochs et al. [28] |
landslide scarp and deposit boulders |
Slope | ks [GPa] | kn [GPa] | [degree] | c [MPa] | b [degree] | bc [MPa] | j [degree] | jc [MPa] |
---|---|---|---|---|---|---|---|---|
Gentle | 0.5 | 1 | 30 | 0.1 | 20 | 0 | 25 | 0.05 |
Medium | 0.5 | 1 | 35 | 0.2 | 25 | 0.1 | 30 | 0.15 |
Steep | 0.5 | 1 | 45 | 1 | 35 | 0.3 | 40 | 0.5 |
Slope | [] | K [GPa] | G [GPa] | [degree] | c [MPa] |
---|---|---|---|---|---|
Gentle | 2400 | 9.59 | 4.06 | 30 | 0.1 |
Medium | 2400 | 9.59 | 4.06 | 35 | 0.2 |
Steep | 2400 | 9.59 | 4.06 | 45 | 1 |
Models | Gentle Slope | Medium Slope | Steep Slope |
---|---|---|---|
(1) b: 10 dip-j: 80 anti-dip | x | x | x |
(2) b: 80 anti-dip-j: 10 dip | x | x | x |
(3) b: 10 anti-dip-j: 80 dip | x | x | |
(4) b: 80 dip-j: 10 anti-dip | x | x | |
(5) b: 35 dip-j: 55 anti-dip | x | ||
(6) b: 55 anti-dip-j: 35 dip | x | ||
(7) b: 50 dip-j: 40 anti-dip | x | ||
(8) b: 40 anti-dip-j: 50 dip | x * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemaire, E.; Mreyen, A.-S.; Dufresne, A.; Havenith, H.-B. Analysis of the Influence of Structural Geology on the Massive Seismic Slope Failure Potential Supported by Numerical Modelling. Geosciences 2020, 10, 323. https://doi.org/10.3390/geosciences10080323
Lemaire E, Mreyen A-S, Dufresne A, Havenith H-B. Analysis of the Influence of Structural Geology on the Massive Seismic Slope Failure Potential Supported by Numerical Modelling. Geosciences. 2020; 10(8):323. https://doi.org/10.3390/geosciences10080323
Chicago/Turabian StyleLemaire, Emilie, Anne-Sophie Mreyen, Anja Dufresne, and Hans-Balder Havenith. 2020. "Analysis of the Influence of Structural Geology on the Massive Seismic Slope Failure Potential Supported by Numerical Modelling" Geosciences 10, no. 8: 323. https://doi.org/10.3390/geosciences10080323
APA StyleLemaire, E., Mreyen, A. -S., Dufresne, A., & Havenith, H. -B. (2020). Analysis of the Influence of Structural Geology on the Massive Seismic Slope Failure Potential Supported by Numerical Modelling. Geosciences, 10(8), 323. https://doi.org/10.3390/geosciences10080323