Validating Structural Styles in the Flysch Basin Northern Rif (Morocco) by Means of Thermal Modeling
Abstract
1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Samples
3.2. Methods
3.2.1. Organic Matter Optical Analysis
3.2.2. Micro-Raman Spectroscopy on Organic Matter
3.2.3. Thermal Modeling
4. Results
4.1. Organic Matter Optical Analysis
4.2. Micro-Raman Spectroscopy on Organic Matter
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dahlstrom, C.D.A. Balanced cross sections. Can. J. Earth Sci. 1969, 6, 743–757. [Google Scholar] [CrossRef]
- Boyer, S.E.; Elliott, D. Thrust systems. Am. Assoc. Pet. Geol. Bull. 1982. [Google Scholar] [CrossRef]
- Butler, R.W.H. Thrust sequences. J. Geol. Soc. Lond. 1987, 144, 619–634. [Google Scholar] [CrossRef]
- Willett, S.D.; Beaumont, C.; Fullsack, P. Mechanical Model for doubly vergent compressional orogens. Geology 1993, 21, 371–374. [Google Scholar] [CrossRef]
- Butler, R.W.H.; Mazzoli, S. Styles of continental contraction: A review and introduction. Spec. Pap. Geol. Soc. Am. 2006, 414. [Google Scholar] [CrossRef]
- Cifelli, F.; Mattei, M.; Porreca, M. New paleomagnetic data from Oligocene-upper Miocene sediments in the Rif chain (northern Morocco): Insights on the Neogene tectonic evolution of the Gibraltar arc. J. Geophys. Res. Solid Earth 2008, 113, 1–12. [Google Scholar] [CrossRef]
- Royden, L.; Faccenna, C. Subduction Orogeny and the Late Cenozoic Evolution of the Mediterranean Arcs. Annu. Rev. Earth Planet. Sci. 2018, 46, 261–289. [Google Scholar] [CrossRef]
- Tozer, R.S.J.; Butler, R.W.H.; Corrado, S. Comparing thin- and thick-skinned thrust tectonic models of the Central Apennines, Italy. Stephan Mueller Spec. Publ. Ser. 2001, 1, 181–194. [Google Scholar] [CrossRef]
- Balestra, M.; Corrado, S.; Aldega, L.; Rudkiewicz, J.L.; Gasparo Morticelli, M.; Sulli, A.; Sassi, W. 3D structural modeling and restoration of the Apennine-Maghrebian chain in Sicily: Application for non-cylindrical fold-and-thrust belts. Tectonophysics 2019, 761, 86–107. [Google Scholar] [CrossRef]
- Leprêtre, R.; de Lamotte, D.F.; Combier, V.; Gimeno-Vives, O.; Mohn, G.; Eschard, R. The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin. BSGF Earth Sci. Bull. 2018, 189, 10. [Google Scholar] [CrossRef]
- Gimeno-Vives, O.; de Lamotte, D.F.; Leprêtre, R.; Haissen, F.; Atouabat, A.; Mohn, G. The structure of the Central-Eastern External Rif (Morocco); Poly-phased deformation and role of the under-thrusting of the North-West African paleo-margin. Earth Sci. Rev. 2020, 205, 103198. [Google Scholar] [CrossRef]
- Casciello, E.; Fernàndez, M.; Vergés, J.; Cesarano, M.; Torne, M. The Alboran domain in the western Mediterranean evolution: The birth of a concept. Bull. Soc. Geol. Fr. 2015, 186, 371–384. [Google Scholar] [CrossRef]
- Platt, J.P.; Vissers, R.L.M. Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc. Geology 1989, 17, 540–543. [Google Scholar] [CrossRef]
- Lonergan, L.; White, N. Origin of the Betic-Rif mountain belt. Tectonics 1997, 16, 504–522. [Google Scholar] [CrossRef]
- Spakman, W.; Wortel, R. A tomographic view on western Mediterranean geodynamics. In The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle; Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M., Ziegler, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 31–52. [Google Scholar]
- Vergés, J.; Fernàndez, M. Tethys-Atlantic interaction along the Iberia-Africa plate boundary: The Betic-Rif orogenic system. Tectonophysics 2012, 579, 144–172. [Google Scholar] [CrossRef]
- Suter, G. Carte Géologique de la Chaîne Rifaine 1:500,000; Service géologique du Maroc, BRGM: Orléans, France, 1980. [Google Scholar]
- Chalouan, A.; Michard, A.; El Kadiri, K.; Negro, F.; de Lamotte, D.F.; Soto, J.-I.; Saddiqi, O. The Rif belt. In The Geology of Morocco; Michard, A., Ed.; Springer: Berlin, Germany, 2008. [Google Scholar] [CrossRef]
- Gimeno-Vives, O.; Mohn, G.; Bosse, V.; Haissen, F.; Zaghloul, M.N.; Atouabat, A.; de Lamotte, D.F. The Mesozoic Margin of the Maghrebian Tethys in the Rif Belt (Morocco): Evidence for Polyphase Rifting and Related Magmatic Activity. Tectonics 2019, 38, 2894–2918. [Google Scholar] [CrossRef]
- Di Paolo, L.; Aldega, L.; Corrado, S.; Mastalerz, M. Maximum burial and unroofing of Mt. Judica recess area in Sicily: Implication for the Apenninic-Maghrebian wedge dynamics. Tectonophysics 2012, 530–531, 193–207. [Google Scholar] [CrossRef]
- Carlini, M.; Artoni, A.; Aldega, L.; Balestrieri, M.L.; Corrado, S.; Vescovi, P.; Bernini, M.; Torelli, L. Exhumation and reshaping of far-travelled/allochthonous tectonic units in mountain belts. New insights for the relationships between shortening and coeval extension in the western Northern Apennines (Italy). Tectonophysics 2013, 608, 267–287. [Google Scholar] [CrossRef]
- Caricchi, C.; Aldega, L.; Corrado, S. Reconstruction of maximum burial along the Northern Apennines thrust wedge (Italy) by indicators of thermal exposure and modeling. GSA Bull. 2015, 127, 428–442. [Google Scholar] [CrossRef]
- Balestra, M.; Corrado, S.; Aldega, L.; Morticelli, M.G.; Sulli, A.; Rudkiewicz, J.; Sassi, W. Thermal and structural modeling of the Scillato wedge-top basin source- to-sink system: Insights into Sicilian fold-and-thrust belt building (Italy). Geol. Soc. Am. 2019, 1–20. [Google Scholar] [CrossRef]
- Corrado, S.; Aldega, L.; Balestrieri, M.L.; Maniscalco, R.; Grasso, M. Structural evolution of the sedimentary accretionary wedge of the alpine system in Eastern Sicily: Thermal and thermochronological constraints. Bull. Geol. Soc. Am. 2009, 121, 1475–1490. [Google Scholar] [CrossRef]
- Bond, C.E.; Gibbs, A.D.; Shipton, Z.K.; Jones, S. What do you think this is? “Conceptual uncertainty” in geoscience interpretation. GSA Today 2007, 17, 4–10. [Google Scholar] [CrossRef]
- Bond, C.E.; Johnson, G.; Ellis, J.F. Structural model creation: The impact of data type and creative space on geological reasoning and interpretation. Geol. Soc. Spec. Publ. 2015, 421, 83–97. [Google Scholar] [CrossRef]
- Hardebol, N.J.; Callot, J.P.; Bertotti, G.; Faure, J.L. Burial and temperature evolution in thrust belt systems: Sedimentary and thrust sheet loading in the SE Canadian Cordillera. Tectonics 2009, 28, 1–28. [Google Scholar] [CrossRef]
- Rosenbaum, G.; Lister, G.S. Formation of arcuate orogenic belts in the western Mediterranean region. Spec. Pap. Geol. Soc. Am. 2004, 383, 41–56. [Google Scholar] [CrossRef]
- Crespo-Blanc, A.; Comas, M.; Balanyá, J.C. Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations. Tectonophysics 2016, 683, 308–324. [Google Scholar] [CrossRef]
- Docherty, C.; Banda, E. Evidence for the eastward migration of the Alboran Sea based on regional subsidence analysis: A case for basin formation by delamination of the subcrustal lithosphere? Tectonics 1995, 14, 804–818. [Google Scholar] [CrossRef]
- Pérouse, E.; Vernant, P.; Chéry, J.; Reilinger, R.; McClusky, S. Active surface deformation and sub-lithospheric processes in the western Mediterranean constrained by numerical models. Geology 2010, 38, 823–826. [Google Scholar] [CrossRef]
- Platt, J.P.; Behr, W.M.; Johanesen, K.; Williams, J.R. The Betic-Rif Arc and Its Orogenic Hinterland: A Review. Annu. Rev. Earth Planet Sci. 2013, 41, 313–357. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Vissers, R.L.M.; Spakman, W. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 2014, 33, 393–419. [Google Scholar] [CrossRef]
- Durand-Delga, M.; Fontboté, J.M. Le cadre structurale de la Méditerranée occidentale. In Les Chaines Alpines Issues de la Téthis, Proceedings of the 26e Congrès Géologique International, Paris, France, 7–17 July 1980; Broché: Paris, France, 1980. [Google Scholar]
- Chalouan, A.; Michard, A. The Alpine Rif belt (Morocco): A case of mountain building in a subduction-subduction-transform fault triple junction. Pure Appl. Geophys. 2004, 161, 489–519. [Google Scholar] [CrossRef]
- Kornprobst, J.; Durand-Delga, M. Carte Géologique du Rif, Sebta, Maroc. 1: 50000. In Notes et Mémoires N 291; Service géologique du Maroc: Rabat, Maroc, 1985. [Google Scholar]
- Kornprobst, J.; Durand-Delga, M.; Faure-Muret, A.; Griffon, J.C.; Uttinger, J.; Leikine, M.; Raoult, J.F. Carte géologique du Rif, Tetouan-Ras Mazari, Maroc. 1: 50000. In Notes et Mémoires N 292; Service géologique du Maroc: Rabat, Maroc, 1985. [Google Scholar]
- Durand-Delga, M.; Didon, J. Carte géologique du Rif, Ksar Es Srhir, Maroc. 1: 50000. In Notes et Mémoires N 295; Service géologique du Maroc: Rabat, Maroc, 1984. [Google Scholar]
- Durand-Delga, M. Carte géologique du Rif, Melloussa, Maroc. 1: 50000. In Notes et Mémoires N 296; Service géologique du Maroc: Rabat, Maroc, 1984. [Google Scholar]
- Durand-Delga, M.; Didon, J.; Médioni, R.; Wernli, R.; Suter, G. Carte géologique du Rif, Tanger-Al Manzla, Maroc. 1: 50000. In Notes et Mémoires N 294; Service géologique du Maroc: Rabat, Maroc, 1985. [Google Scholar]
- Favre, P.; Stampfli, G.M. From rifting to passive margin: The examples of the Red Sea, Central Atlantic and Alpine Tethys. Tectonophysics 1992, 215, 69–97. [Google Scholar] [CrossRef]
- de Lamotte, D.F.; Raulin, C.; Mouchot, N.; Wrobel-Daveau, J.-C.; Blanpied, C.; Ringenbach, J.-C. The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics 2011, 30. [Google Scholar] [CrossRef]
- Bouillin, J. Le “bassin maghrebin”; une ancienne limite entre l’Europe et l’Afrique a l’ouest des Alpes. Bull. Soc. Géol. Fr. 1986, 2, 547–558. [Google Scholar] [CrossRef]
- Milliard, Y. Les massifs métamorphiques et ultrabasiques de la zone paléo-zoïque interne du Rif. Notes Mem. Serv. Géol. Maroc 1959, 18, 125–160. [Google Scholar]
- Kornprobst, J. Signification structurale des peridotites dans l’orogene betico-rifain; arguments tires de l’etude des detritus observes dans les sediments paleozoiques. Bull. Soc. Géol. Fr. 1976, 7, 607–618. [Google Scholar] [CrossRef]
- Rossetti, F.; Theye, T.; Lucci, F.; Bouybaouene, M.L.; Dini, A.; Gerdes, A.; Phillips, D.; Cozzupoli, D. Timing and modes of granite magmatism in the core of the Alboran Domain, Rif chain, northern Morocco: Implications for the Alpine evolution of the western Mediterranean. Tectonics 2010, 29. [Google Scholar] [CrossRef]
- Wildi, W. La chaîne tello-rifaine (Algérie, Maroc, Tunisie): Structure, stratigraphie et évolution du Trias au Miocène. Rev. Geogr. Phys. Geol. Dyn. 1983, 24, 201–297. [Google Scholar]
- Chalouan, A. Les Nappes Ghomarides (Rif Septentrional, Maroc). Un Terrain Varisque dans la Chaîne Alpine. Ph.D. Thesis, Université Louis Pasteur de Strasbourg, Strasbourg, France, 1986. [Google Scholar]
- Chalouan, A.; Michard, A. The Ghomarides nappes, Rif coastal range, Morocco: A variscan chip in the Alpine belt. Tectonics 1990, 9, 1565–1583. [Google Scholar] [CrossRef]
- Zaghloul, M.N.; Di Staso, A.; Hlila, R.; Perrone, V.; Perrotta, S. The oued dayr formation: First evidence of a new miocene late-orogenic cycle on the ghomaride complex (Internal domains of the rifian maghrebian chain, Morocco). Geodin. Acta 2010, 23, 185–194. [Google Scholar] [CrossRef]
- Negro, F.; Beyssac, O.; Goffé, B.; Saddiqi, O.; Bouybaouène, M.L. Thermal structure of the Alboran Domain in the Rif (northern Morocco) and the Western Betics (southern Spain). Constraints from Raman spectroscopy of carbonaceous material. J. Metamorph. Geol. 2006, 24, 309–327. [Google Scholar] [CrossRef]
- Wildi, W.; Nold, M.; Uttinger, J. La Dorsale calcaire entre Tetouan et Assifane (Rif interne, Maroc). Ecol. Geol. Helv. 1977, 70, 371–415. [Google Scholar]
- El Kadiri, K.; Linares, A.; Oloriz, F. La Dorsale calcaire rifaine (Maroc septentrional): Evolution stratigraphique et géodynamique durant le Jurassique-Crétacé. Notes Mém. Serv. Géol. 1992, 366, 217–265. [Google Scholar]
- Guerrera, F.; Martín-Martín, M.; Perrone, V.; Tramontana, M. Tectono-sedimentary evolution of the southern branch of the Western Tethys (Maghrebian Flysch Basin and Lucanian Ocean): Consequences for Western Mediterranean geodynamics. Terra Nov. 2005, 17, 358–367. [Google Scholar] [CrossRef]
- De Capoa, P.; D’errico, M.; Di Staso, A.; Perrone, V.; Zaghloul, M.N. Biostratigraphic constraints for the paleogeographic and tectonic evolution of the Alpine central-western Mediterranean chains (Betic, Maghrebian and Apenninic chains); CINECA IRIS: Bari, Italy, 2013. [Google Scholar]
- Durand-Delga, M.; Rossi, P.; Olivier, P.; Puglisi, D. Situation structurale et nature ophiolitique de roches basiques jurassiques associees aux flyschs maghrebins du Rif (Maroc) et de Sicile (Italie). C. R. Acad. Sci. 2000, 331, 29–38. [Google Scholar] [CrossRef]
- Zaghloul, M.N.; Di Staso, A.; De Capoa, P.; Perrone, V. Occurrence of upper Burdigalian silexite beds within the Beni Ider Flysch Fm. in the Ksar-es-Seghir area (Maghrebian Flysch Basin, Northern Rif, Morocco): Stratigraphic correlations and geodynamic implications. Boll. Soc. Geol. Ital. 2007, 126, 223–239. [Google Scholar]
- Azdimousa, A.; Jabaloy-sánchez, A.; Talavera, C.; Asebriy, L.; González-lodeiro, F.; Evans, N.J. Detrital zircon U-Pb ages in the Rif Belt (northern Morocco): Paleogeographic implications. Gondwana Res. 2019, 70, 133–150. [Google Scholar] [CrossRef]
- Bouillin, J.P.; Durand-Delga, M.; Gelard, J.P.; Leikine, M.; Raoult, J.F.; Raymond, D.; Tefiani, M.; Vila, J.M. Définition d’un flysch massylien et d’un flysch maurétanien au sein des flyschs allochtones de l’Algérie. C. R. Acad. Sci. Paris 1970, 270, 2249–2252. [Google Scholar]
- Dercourt, J.; Zonenshain, L.P.; Ricou, L.E.; Kazmin, V.G.; Le Pichon, X.; Knipper, A.L.; Grandjacquet, C.; Sbortshikov, I.M.; Geyssant, J.; Lepvrier, C.; et al. Geological evolution of the tethys belt from the atlantic to the pamirs since the LIAS. Tectonophysics 1986, 123, 241–315. [Google Scholar] [CrossRef]
- Durand-Delga, M.; Gardin, S.; Olivier, P. Datation des flyschs eocretaces mauretaniens des Maghrebides: La formation du jbel Tisirene (Rif, Maroc). C. R. Acad. Sci. 1999, 328, 701–709. [Google Scholar] [CrossRef]
- Gübeli, A.A.; Hochuli, P.A.; Wildi, W. Lower Cretaceous turbiditic sediments from the Rif chain (Northern Marocco)—Palynology, stratigraphy and palaeogeographic setting. Geol. Rundschau 1984, 73, 1081–1114. [Google Scholar] [CrossRef]
- Didon, J. Les séries a faciès mixte, numidien et gréso-micacé, dans le Rif occidental (Maroc). Bull. Soc. Geol. Fr. 1978, 6, 304–307. [Google Scholar]
- Lustrino, M.; Duggen, S.; Rosenberg, C.L. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting. Earth-Sci. Rev. 2011, 104, 1–40. [Google Scholar] [CrossRef]
- Guerrera, F.; Martín-Algarra, A.; Martín-Martín, M. Tectono-sedimentary evolution of the “Numidian Formation” and Lateral Facies (southern branch of the western Tethys): Constraints for central-western Mediterranean geodynamics. Terra Nov. 2012, 24, 34–41. [Google Scholar] [CrossRef]
- Chalouan, A.; El Mrihi, A.; El Kadiri, K.; Bahmad, A.; Salhi, F.; Hlila, R. Mauretanian flysch nappe in the northwestern Rif Cordillera (Morocco): Deformation chronology and evidence for a complex nappe emplacement. Geol. Soc. Spec. Publ. 2006, 262, 161–175. [Google Scholar] [CrossRef]
- Michard, A.; Mokhtari, A.; Chalouan, A.; Saddiqi, O.; Rossi, P.; Rjimati, E.C. New ophiolite slivers in the External Rif belt, and tentative restoration of a dual Tethyan suture in the western Maghrebides. Bull. Soc. Geol. Fr. 2014, 185, 313–328. [Google Scholar] [CrossRef]
- Andrieux, J. La Structure du Rif Central: Étude des Relations entre la Tectonique de Compression et les Nappes de Glissement dans un Tronçon de la Chaîne Alpine; Editions du Service géologique du Maroc: Rabat, Maroc, 1971; Volume 235. [Google Scholar]
- Vidal, J.C. Present structure and evolution of the Rif chain (southern part of the arc of Gibraltar) since the Miocene. Bull. Soc. Géol. Fr. 1977, 7, 789–796. [Google Scholar] [CrossRef]
- Crespo-Blanc, A.; de Lamotte, D.F. Structural evolution of the external zones derived from the Flysch trough and the South Iberian and Maghrebian paleomargins around the Gibraltar arc: A comparative study. Bull. Soc. Geol. Fr. 2006, 177, 267–282. [Google Scholar] [CrossRef]
- Balsamo, F.; Aldega, L.; De Paola, N.; Faoro, I.; Storti, F. The signature and mechanics of earthquake ruptures along shallow creeping faults in poorly lithified sediments. Geology 2014, 42, 435–438. [Google Scholar] [CrossRef]
- Bustin, R.M.; Barnes, M.A.; Barnes, W.C. Determining levels of organic diagenesis in sediments and fossil fuels. In Diagenesis: Geosciences Canada Reprint, Fourth Series; Geological Association of Canada: St. John’s, NL, Canada, 1990; pp. 205–226. [Google Scholar]
- Borrego, A.G.; Araujo, C.V.; Balke, A.; Cardott, B.; Cook, A.C.; David, P.; Flores, D.; Hámor-Vidó, M.; Hiltmann, W.; Kalkreuth, W. Influence of particle and surface quality on the vitrinite reflectance of dispersed organic matter: Comparative exercise using data from the qualifying system for reflectance analysis working group of ICCP. Int. J. Coal Geol. 2006, 68, 151–170. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffé, B.; Chopin, C.; Rouzaud, J.N. Raman spectra of carbonaceous material in metasediments: A new geothermometer—Beyssac—2002—Journal of Metamorphic Geology—Wiley Online Library. J. Metamorph. Geol. 2002, 20, 859–871. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffé, B.; Petitet, J.P.; Froigneux, E.; Moreau, M.; Rouzaud, J.N. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. In Spectrochimica Acta—Part A: Molecular and Biomolecular Spectroscopy, Proceedings of the Fifth International Conference on Raman Spectroscopy Applied to the Earth Sciences, Prague, Czech Republic, 12–15 June 2002; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Lahfid, A.; Beyssac, O.; Deville, E.; Negro, F.; Chopin, C.; Goffé, B. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nov. 2010, 22, 354–360. [Google Scholar] [CrossRef]
- Guedes, A.; Valentim, B.; Prieto, A.C.; Rodrigues, S.; Noronha, F. Micro-Raman spectroscopy of collotelinite, fusinite and macrinite. Int. J. Coal Geol. 2010, 83, 415–422. [Google Scholar] [CrossRef]
- Hinrichs, R.; Brown, M.T.; Vasconcellos, M.A.Z.; Abrashev, M.V.; Kalkreuth, W. Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy. Int. J. Coal Geol. 2014, 136, 52–58. [Google Scholar] [CrossRef]
- Wilkins, R.W.T.; Boudou, R.; Sherwood, N.; Xiao, X. Thermal maturity evaluation from inertinites by Raman spectroscopy: The “RaMM” technique. Int. J. Coal Geol. 2014, 128–129, 143–152. [Google Scholar] [CrossRef]
- Zhou, Q.; Xiao, X.; Pan, L.; Tian, H. The relationship between micro-Raman spectral parameters and reflectance of solid bitumen. Int. J. Coal Geol. 2014, 121, 19–25. [Google Scholar] [CrossRef]
- Ferralis, N.; Matys, E.D.; Knoll, A.H.; Hallmann, C.; Summons, R.E. Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy. Carbon N. Y. 2016, 108, 440–449. [Google Scholar] [CrossRef]
- Lünsdorf, N.K. Raman spectroscopy of dispersed vitrinite—Methodical aspects and correlation with reflectance. Int. J. Coal Geol. 2016, 153, 75–86. [Google Scholar] [CrossRef]
- Schmidt Mumm, A.; Inan, S. Microscale organic maturity determination of graptolites using Raman spectroscopy. Int. J. Coal Geol. 2016, 162, 96–107. [Google Scholar] [CrossRef]
- Lupoi, J.S.; Fritz, L.P.; Parris, T.M.; Hackley, P.C.; Solotky, L.; Eble, C.F.; Schlaegle, S. Assessment of thermal maturity trends in Devonian–Mississippian source rocks using Raman spectroscopy: Limitations of peak-fitting method. Front. Energy Res. 2017, 5, 24. [Google Scholar] [CrossRef]
- Schito, A.; Romano, C.; Corrado, S.; Grigo, D.; Poe, B. Diagenetic thermal evolution of organic matter by Raman spectroscopy. Org. Geochem. 2017, 106, 57–67. [Google Scholar] [CrossRef]
- Henry, D.G.; Jarvis, I.; Gillmore, G.; Stephenson, M.; Emmings, J.F. Assessing low-maturity organic matter in shales using Raman spectroscopy: Effects of sample preparation and operating procedure. Int. J. Coal Geol. 2018, 191, 135–151. [Google Scholar] [CrossRef]
- Henry, D.G.; Jarvis, I.; Gillmore, G.; Stephenson, M. A rapid method for determining organic matter maturity using Raman spectroscopy: Application to Carboniferous organic-rich mudstones and coals. Int. J. Coal Geol. 2019, 203, 87–98. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Friedel, R.A.; Carlson, G.L. Difficult carbonaceous materials and their infra-red and Raman spectra. Reassignments for coal spectra. Fuel 1972, 51, 194–198. [Google Scholar] [CrossRef]
- Reich, S.; Thomsen, C. Raman spectroscopy of graphite. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2271–2288. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291. [Google Scholar] [CrossRef]
- Pócsik, I.; Hundhausen, M.; Koós, M.; Ley, L. Origin of the D peak in the Raman spectrum of microcrystalline graphite. J. Non. Cryst. Solids 1998, 227–230, 1083–1086. [Google Scholar] [CrossRef]
- Negri, F.; Castiglioni, C.; Tommasini, M.; Zerbi, G. A computational study of the Raman spectra of large polycyclic aromatic hydrocarbons: Toward molecularly defined subunits of graphite. J. Phys. Chem. A 2002, 106, 3306–3317. [Google Scholar] [CrossRef]
- Negri, F.; di Donato, E.; Tommasini, M.; Castiglioni, C.; Zerbi, G.; Müllen, K. Resonance Raman contribution to the D band of carbon materials: Modeling defects with quantum chemistry. J. Chem. Phys. 2004, 120, 11889–11900. [Google Scholar] [CrossRef]
- Di Donato, E.; Tommasini, M.; Fustella, G.; Brambilla, L.; Castiglioni, C.; Zerbi, G.; Simpson, C.D.; Müllen, K.; Negri, F. Wavelength-dependent Raman activity of D2h symmetry polycyclic aromatic hydrocarbons in the D-band and acoustic phonon regions. Chem. Phys. 2004, 301, 81–93. [Google Scholar] [CrossRef]
- Li, C.Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal. Fuel 2007, 86, 1664–1683. [Google Scholar] [CrossRef]
- Beny-Bassez, C.; Rouzaud, J.N. Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy. Scan. Electron. Microsc. 1985, 1, 119–132. [Google Scholar]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Am. Phys. Soc. 2000, 61, 14095. [Google Scholar] [CrossRef]
- Castiglioni, C.; Tommasini, M.; Zerbi, G. Raman spectroscopy of polyconjugated molecules and materials: Confinement effect in one and two dimensions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2425–2459. [Google Scholar] [CrossRef] [PubMed]
- Schito, A.; Corrado, S. An automatic approach for characterization of the thermal maturity of dispersed organic matter Raman spectra at low diagenetic stages. Geol. Soc. Lond. Spec. Publ. 2018, 484. [Google Scholar] [CrossRef]
- Sclater, J.G.; Christie, P.A.F. Continental stretching: An explanation of the post-mid-Cretaceous subsidence of the central North Sea basin. J. Geophys. Res. Solid Earth 1980, 85, 3711–3739. [Google Scholar] [CrossRef]
- Endignoux, L.; Wolf, S.; Letouzey, J. Thermal and kinematic evolution of thrust basins: A 2D numerical model. Pet. Tecton. Mob. Belts Paris Ed. Tech. 1990, 47, 181–192. [Google Scholar]
- Burnham, A.K.; Sweeney, J.J. A chemical kinetic model of vitrinite maturation and reflectance. Geochim. Cosmochim. Acta 1989, 53, 2649–2657. [Google Scholar] [CrossRef]
- Sweeney, J.J.; Burnham, A.K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Am. Assoc. Pet. Geol. Bull. 1990, 74, 1559–1570. [Google Scholar]
- Rimi, A. Mantle heat flow and geotherms for the main geologic domains in Morocco. Earth Sci. 1999, 458–466. [Google Scholar] [CrossRef]
- Rimi, A.; Zeyen, H.; Zarhloule, Y.; Correia, A.; Carneiro, J.; Cherkaoui, T. Structure Thermique de la Lithosphère à Travers la Limite des Plaques Ibérie—Afrique par Modélisation Intégrée du Flux de Chaleur, de la Densité et de la Topographie le Long d ’un Transect N-S à 3 Ouest; Bulletin de l’Institut Scientifique, section Sciences de la Terre: Rabat, Maroc, 2008; pp. 29–37. [Google Scholar]
- Butler, R.W.H. Hydrocarbon maturation, migration and tectonic loading in the Western Alpine foreland thrust belt. Geol. Soc. Lond. Spec. Publ. 1991, 59, 227–244. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence, 2nd ed.; Science & Business Media: Berlin/Heidelberg, Germany, 1984; p. 699. [Google Scholar]
- Corrado, S.; Chiara Invemizzi, C.; Marzzoli, S. Tectonic burial and exhumation in a foreland fold and thrust belt: The Monte Alpi case history (Southern Apennines, Italy). Geodin. Acta 2002, 15, 159–177. [Google Scholar] [CrossRef]
- Liu, D.H.; Xiao, X.M.; Tian, H.; Min, Y.S.; Zhou, Q.; Cheng, P.; Shen, J.G. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications. Chinese Sci. Bull. 2013, 58, 1285–1298. [Google Scholar] [CrossRef]
- Jubb, A.M.; Botterell, P.J.; Birdwell, J.E.; Burruss, R.C.; Hackley, P.C.; Valentine, B.J.; Hatcherian, J.J.; Wilson, S.A. High microscale variability in Raman thermal maturity estimates from shale organic matter. Int. J. Coal Geol. 2018, 199, 1–9. [Google Scholar] [CrossRef]
- Schito, A.; Corrado, S.; Aldega, L.; Grigo, D. Overcoming pitfalls of vitrinite reflectance measurements in the assessment of thermal maturity: The case history of the lower Congo basin. Mar. Pet. Geol. 2016, 74, 59–70. [Google Scholar] [CrossRef]
- Guerrera, F.; Martín-Martín, M.; Tramontana, M. Evolutionary geological models of the central-western peri-Mediterranean chains: A review. Int. Geol. Rev. 2019. [Google Scholar] [CrossRef]
- Marshak, S. Salients, recesses, arcs, oroclines, and syntaxes—A review of ideas concerning the formation of map-view curves in fold-thrust belts. AAPG Mem. 2005, 82, 131–156. [Google Scholar]
- Leblanc, D.; Olivier, P. Role of strike-slip faults in the Betic-Rifian orogeny. Tectonophysics 1984. [Google Scholar] [CrossRef]
- Leon, J.T. de Signification de la limite Jebha-Arbaoua (Maroc nord-occidental): Une rampe latérale au-dessus d’une discontinuité crustale héritée de la période de rifting. J. Afr. Earth Sci. 1997. [Google Scholar] [CrossRef]
- Benmakhlouf, M.; Galindo-Zaldívar, J.; Chalouan, A.; Sanz de Galdeano, C.; Ahmamou, M.; López-Garrido, A.C. Inversion of transfer faults: The Jebha-Chrafate fault (Rif, Morocco). J. Afr. Earth Sci. 2012, 73–74, 33–43. [Google Scholar] [CrossRef]
- Vitale, S.; Zaghloul, M.N.; El Ouaragli, B.; Tramparulo, F.D.A.; Ciarcia, S. Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian Flysch Basin Units in the Jebha area (Central Rif, Morocco): New insights into the Miocene tectonic evolution of the Central Rif belt. J. Geodyn. 2015, 90, 14–31. [Google Scholar] [CrossRef]
UNIT | SAMPLES | COORDINATES | AGES | Ro% | Sd. (±) | Nr. Fr | Ro% eq. | Sd. (±) |
---|---|---|---|---|---|---|---|---|
MAURETANIAN | E1 | 35.80055556; −5.480833333 | Aptian | 0.64 | 0.08 | 9 | _ | _ |
E5 | 35.78333333; −5.535833333 | Oligocene | 0.92 | 0.08 | 16 | _ | _ | |
E7 | 35.775963; −5.566249111 | Eocene | 0.65 | 0.08 | 12 | _ | _ | |
E9 | 35.79361111; −5.592222222 | Barremian | 0.75 | 0.07 | 23 | _ | _ | |
E11 | 35.77958303; −5.610247222 | Miocene | 1.00 | 0.08 | 40 | _ | _ | |
E13 | 35.78833333; −5.639166667 | Campanian | 0.84 | 0.04 | 8 | 0.86 | 0.08 | |
E16 | 35.72027778; −5.635833333 | Barremian | 0.98 | 0.05 | 29 | _ | _ | |
MASSYLIAN | E15 | 35.77277778; −5.663611111 | Aptian | 1.01 | 0.07 | 18 | 1.00 | 0.08 |
E14 | 35.80676; −5.696666 | U. Cretaceous | 0.77 | 0.06 | 20 | _ | _ | |
E17 | 35.70777778; −5.654166667 | Albian | 1.00 | 0.05 | 28 | 0.98 | 0.07 | |
E19 | 35.69285255; −5.658765111 | Aptian | 0.82 | 0.06 | 33 | 0.90 | 0.10 | |
INTRARIF | E20 | 35.68888889; −5.671944444 | Campanian | 1.02 | 0.06 | 30 | 1.06 | 0.06 |
E24 | 35.705; −5.792777778 | Campanian | 0.87 | 0.09 | 24 | 0.88 | 0.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atouabat, A.; Corrado, S.; Schito, A.; Haissen, F.; Gimeno-Vives, O.; Mohn, G.; Frizon de Lamotte, D. Validating Structural Styles in the Flysch Basin Northern Rif (Morocco) by Means of Thermal Modeling. Geosciences 2020, 10, 325. https://doi.org/10.3390/geosciences10090325
Atouabat A, Corrado S, Schito A, Haissen F, Gimeno-Vives O, Mohn G, Frizon de Lamotte D. Validating Structural Styles in the Flysch Basin Northern Rif (Morocco) by Means of Thermal Modeling. Geosciences. 2020; 10(9):325. https://doi.org/10.3390/geosciences10090325
Chicago/Turabian StyleAtouabat, Achraf, Sveva Corrado, Andrea Schito, Faouziya Haissen, Oriol Gimeno-Vives, Geoffroy Mohn, and Dominique Frizon de Lamotte. 2020. "Validating Structural Styles in the Flysch Basin Northern Rif (Morocco) by Means of Thermal Modeling" Geosciences 10, no. 9: 325. https://doi.org/10.3390/geosciences10090325
APA StyleAtouabat, A., Corrado, S., Schito, A., Haissen, F., Gimeno-Vives, O., Mohn, G., & Frizon de Lamotte, D. (2020). Validating Structural Styles in the Flysch Basin Northern Rif (Morocco) by Means of Thermal Modeling. Geosciences, 10(9), 325. https://doi.org/10.3390/geosciences10090325