Ionosonde Data Analysis in Relation to the 2016 Central Italian Earthquakes
Abstract
:1. Introduction
2. Observations and Methods
3. Results
3.1. Ionospheric Anomalies under All Geomagnetic Conditions
3.2. Forecast Possibilities
4. Discussion
5. Conclusions
- The crustal EQs that occurred in 2016 next to the town of Amatrice, Italy belong to the same type of events that took place earlier in Central Italy. Similar to the earlier analyzed events, they support the relationship between the observed ionospheric anomalies and the magnitude, lead time, and the epicentral distance of the EQs.
- The obtained relationships (linear regressions) are statistically significant at the confidence level >95% according to F-criterion. They are similar to expressions obtained earlier for Japanese and Greek EQs.
- The inclusion in the analysis of anomalies obtained during magnetically disturbed periods only slightly changes the regression coefficients without changing statistical significance of the regressions as a whole.
- The existence of false ionospheric precursors that cannot be separated from real ones and the statistic insignificance of the second coefficient in (6) are the main obstacles to using the obtained quantitative relationships for EQ predictions. The number of false precursors increases for magnetically disturbed periods. Besides, for possible future practical application of the method, a different background making use of past data only should be used in the anomaly definition.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bolt, B.A. Earthquake, 4th ed.; Freeman and Company: New York, NY, USA, 1999. [Google Scholar]
- Freund, F. Time resolved study of charge generation and propagation in igneous rocks. J. Geophys. Res. 2000, 105, 11001–11019. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Molchanov, O.A. Seismo Electromagnetic, Lithospheric-Atmospheric-Ionospheric Coupling; Terra Science Publishing Co.: Tokyo, Japan, 2002. [Google Scholar]
- Pulinets, S.A.; Boyarchuk, K.A. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- De Santis, A.; De Franceschi, G.; Spogli, L.; Perrone, L.; Alfonsi, L.; Qamili, E.; Cianchini, G.; Di Giovambattista, R.; Salvi, S.; Filippi, E.; et al. Geospace perturbations induced by the Earth: The state of the art and future trends. Phys. Chem. Earth 2005, 85, 17–33. [Google Scholar] [CrossRef] [Green Version]
- Row, R.V. Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake. J. Geophys. Res. Phys. 1967, 72, 1599–1610. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Feng, D.; Kiryushkin, V.V.; Astafyeva, E.I. Near-field TEC response to the main shock of the 2008 Wenchuan earthquake. Earth Planets Space 2010, 62, 899–904. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, T.; Tsugawa, T.; Kato, H.; Saito, A.; Otsuka, Y.; Nishioka, M. Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 2011, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Chen, C.H.; Lin, C.H.; Tsai, H.F.; Chen, C.H.; Kamogawa, M. Ionospheric disturbances triggered by the 11 March 2011 M9.0 Tohoku earthquake. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Jin, S. Two-mode ionospheric disturbances following the 2005 northern California offshore earthquake from GPS measurements. J. Geophys. Res. Space Phys. 2018, 123, 8587–8598. [Google Scholar] [CrossRef]
- Astafyeva, E.; Heki, K. Dependence of waveform of near-field coseismic ionospheric disturbances on focal mechanisms. Earth Planets Space 2009, 61, 939–943. [Google Scholar] [CrossRef] [Green Version]
- Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci. 2011, 41, 383–400. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M. Seismo-Electromagnetics and Related Phenomena: History and Latest Results; TERRAPUB: Tokyo, Japan, 2008. [Google Scholar]
- Gufeld, I.L.; Gusev, G.A. Recent state of earthquake predictions (Is there any way out of the impasse?). In Short-Term Prediction of Catastrophic Earthquakes Using Radar Ground-Space Methods; Strakhov, V.N., Liperovsky, V.A., Eds.; OIFZ RAN: Moscow, Russia, 1998; pp. 7–25. [Google Scholar]
- Hayakawa, M. Atmospheric and Ionospheric Electromagnetic Phenomena with Earthquakes; Terra Science Publishing Co.: Tokyo, Japan, 1999. [Google Scholar]
- Strakhov, V.N.; Liperovsky, V.A. Short-Term Forecast of Catastrophic Earthquakes Using Radiophysical Ground-Based and Space Methods; Institute of Earth Physics: Moscow, Russia, 1999. [Google Scholar]
- Bortnik, J.; Cutler, J.W.; Dunson, C.; Bleier, T.E. The possible statistical relation of Pc1 pulsations to Earthquake occurrence at low latitudes. Ann. Geophys. 2008, 26, 2825–2836. [Google Scholar] [CrossRef] [Green Version]
- Ondoh, T. Investigation of precursory phenomena in the ionosphere, atmosphere and groundwater before large earthquakes of M > 6:5. Adv. Space Res. 2009, 43, 214–223. [Google Scholar] [CrossRef]
- Trigunait, A.; Parrot, M.; Pulinets, S.; Li, F. Variations of the ionospheric electron density during the Bhuj seismic event. Ann. Geophys. 2004, 22, 4123–4131. [Google Scholar] [CrossRef]
- Hobara, Y.; Parrot, M. Ionospheric perturbations linked to a very powerful seismic event. J. Atmos. Sol.-Terr. Phys. 2005, 67, 677–685. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Chen, C.S. A statistical investigation of pre-earthquake ionospheric anomaly. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Maekawa, S.; Horie, T.; Yamauchi, T.; Sawaya, T.; Ishikawa, M.; Hayakawa, M.; Sasaki, H. A statistical study on the effect of earthquakes on the ionosphere, based on the subionospheric LF propagation data in Japan. Ann. Geophys. 2006, 24, 2219–2225. [Google Scholar] [CrossRef]
- Sharma, D.K.; Israil, M.; Chand, R.; Rai, J.; Subrahmanyam, P.; Garg, S.C. Signature of seismic activities in the F2 region ionospheric electron temperature. J. Atmos. Sol.-Terr. Phys. 2006, 68, 691–696. [Google Scholar] [CrossRef]
- Ondoh, T.; Hayakawa, M. Synthetic study of precursory phenomena of the M7.2 Hyogo-ken Nanbu earthquake. Phys. Chem. Earth 2006, 31, 378–388. [Google Scholar] [CrossRef]
- Dabas, R.S.; Das, R.M.; Sharma, K.; Pillai, K.G.M. Ionospheric precursors observed over low latitudes during some of the recent major earthquakes. J. Atmos. Sol.-Terr. Phys. 2007, 69, 1813–1824. [Google Scholar] [CrossRef]
- Astafyeva, E.; Shalimov, S.; Olshanskaya, E.; Lognonné, P. Ionospheric response to earthquakes of different magnitudes: Larger quakes perturb the ionosphere stronger and longer. Geophys. Res. Lett. 2013, 40, 1675–1681. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, C.; Haralambou, H.; Muslim, B. Investigation of ionospheric TEC precursors related to the M7.8 Nepal and M8.3 Chile earthquakes in 2015 based on spectral and statistical analysis. Nat. Hazards 2016, 83, 97. [Google Scholar] [CrossRef]
- Bertello, I.; Piersanti, M.; Candidi, M.; Diego, P.; Ubertini, P. Electromagnetic field observations by the DEMETER satellite in connection with the 2009 L’Aquila earthquake. Ann. Geophys. 2018, 36, 1483–1493. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.H.; Zhang, X.M.; Yuan, S.G.; Wang, L.W.; Cao, J.B.; Huang, J.P.; Zhu, X.H.; Picozza, P.; Dai, J.P. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Ser. E Techol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Luhr, H.; Hulot, G. Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 2006, 58, 351–358. [Google Scholar] [CrossRef] [Green Version]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; et al. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef] [Green Version]
- Silina, A.S.; Liperovskaya, E.V.; Liperovsky, V.A.; Meister, C.-V. Ionospheric phenomena before strong earthquakes. Nat. Hazards Earth Syst. Sci. 2001, 1, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Bremer, J.; Laštovička, J.; Mikhailov, A.V.; Altadill, D.; Bencze, P.; Burešová, D.; De Franceschi, G.; Jacobi, C.; Kouris, S.; Perrone, L.; et al. Climate of the upper atmosphere. Ann. Geophys. 2009, 52, 273–299. [Google Scholar]
- Perrone, L.; De Franceschi, G. A correlation study between time-weighted magnetic indices and the high latitude ionosphere. Phys. Chem. Earth Part C Sol. Terr. Planet. Sci. 1999, 24, 389–392. [Google Scholar]
- Mikhailov, A.V.; Perrone, L. The annual asymmetry in the F2-layer during deep solar minimum (2008–2009): December anomaly. J. Geophys. Res. 2015, 120, 1341–1354. [Google Scholar] [CrossRef]
- Cander, L.R.; Dominici, P.; Zolesi, B. Atmospheric gravity waves and ionospheric modelling. Adv. Space Res. 1990, 10, 75–78. [Google Scholar] [CrossRef]
- Laštovička, J. Observations of tides and planetary waves in the atmosphere-ionosphere system. Adv. Space Res. 1997, 20, 1209–1222. [Google Scholar] [CrossRef]
- Perrone, L.; Mikhailov, A.V.; Nusinov, A. Daytime mid-latitude F2-layer Q-disturbances: A formation mechanism. Sci. Rep. 2020, 10, 9997. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Depueva, A.H.; Depuev, V.H. Quiet time F2-layer disturbances: Seasonal variation of the occurrence in the daytime sector. Ann. Geophys. 2009, 27, 329–337. [Google Scholar] [CrossRef]
- Xu, T.; Hu, Y.L.; Wang, F.F.; Chen, Z.; Wu, J. Is there any difference in local time variation in ionospheric F2-layer disturbances between earthquake-induced and Q-disturbance events? Ann. Geophys. 2015, 33, 687–695. [Google Scholar] [CrossRef]
- Korsunova, L.P.; Khegai, V.V. Medium-term ionospheric precursors to strong earthquakes. Int. J. Geomagn. Aeron. 2006, 6. [Google Scholar] [CrossRef]
- Korsunova, L.P.; Khegai, V.V. Analysis of seismo-ionospheric disturbances at the chain of Japanese stations for vertical sounding of the ionosphere. Geomagn. Aeron. 2008, 48, 392–399. [Google Scholar] [CrossRef]
- Perrone, L.; Korsunova, L.P.; Mikhailov, A.V. Ionospheric precursors for crustal earthquakes in Italy. Ann. Geophys. 2010, 28, 941–950. [Google Scholar] [CrossRef] [Green Version]
- Perrone, L.; De Santis, A.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Carbone, M.; Cesaroni, C.; Cianchini, G.; De Franceschi, G.; De Santis, A.; et al. Ionospheric Anomalies Detected by Ionosonde and Possibly Related to Crustal Earthquakes in Greece. Ann. Geophys. 2018, 36, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Dobrovolsky, I.R.; Zubkov, S.I.; Myachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Villalobos, C.U.; Bravo, M.A.; Ovalle, E.M.; Foppiano, A.J. Ionospheric characteristics prior to the greatest earthquake in recorded history. Adv. Space Res. 2016, 57, 1345–1359. [Google Scholar] [CrossRef]
- Somoye, E.O. Periodicity of solar cycle from diurnal variations of f0F2. Int. J. Phys. Sci. 2009, 4, 111–114. [Google Scholar]
- Bibl, K.; Reinisch, B.D. The universal digital ionosonde. Radio Sci. 1978, 13, 519–530. [Google Scholar] [CrossRef]
- Zuccheretti, E. Interfacing and off-line analysis for VOS-1A Barry ionosonde. Ann. Geofis. 1998, 41, 633–641. [Google Scholar] [CrossRef]
- Zuccheretti, E.; Tutone, G.; Sciacca, U.; Bianchi, C.; Arokiasamy, B.J. The new AIS-INGV digital ionosonde. Ann. Geophys. 2003, 46, 647–659. [Google Scholar]
- Scotto, C.; Pezzopane, M. A software for automatic scaling of foF2 and MUF(3000)F2 from ionograms. In Proceeding of the URSI XXVIIth General Assembly, Maastricht, The Netherlands, 17–24 August 2002; pp. 17–24. [Google Scholar]
- Scotto, C.; Pezzopane, M. A method for automatic scaling of sporadic E layers from ionograms. Radio Sci. 2007, 42. [Google Scholar] [CrossRef]
- Haldoupis, C. Chapter 29: A tutorial review on Sporadic E layers. In Aeronomy of the Earth’s Atmosphere–Ionosphere; Springer: Berlin/Heidelberg, Germany, 2011; pp. 381–394. [Google Scholar]
- Sidorin, A.Y. Earthquake Precursors; Nauka: Moscow, Russia, 1992; p. 191. [Google Scholar]
- Rikitake, T. Earthquake precursors in Japan: Precursor time and detectability. Tectonophysics 1987, 136, 265–282. [Google Scholar] [CrossRef]
- Sugan, M.; Kato, A.; Miyake, H.; Nakagawa, S.; Vuan, A. The preparatory phase of the 2009 Mw 6.3 L’Aquila earthquake by improving the detection capability of low-magnitude foreshocks. Geophys. Res. Lett. 2014, 41, 6137–6144. [Google Scholar] [CrossRef]
- Di Giovambattista, R.; Tyupkin, Y.S. Seismicity patterns before the M = 5.8 2002, Palermo (Italy) earthquake: Seismic quiescence and accelerating seismicity. Tectonophysics 2004, 384, 243–255. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Khegai, V.V.; Boyarchuk, K.A.; Lomonosov, A.M. Atmospheric electric field as a source of ionospheric variability. Phys. Uspekhi 1998, 41, 515–522. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Yaschenko, A.K.; Hayakawa, M. Formation mechanism of the lower ionospheric disturbances by the atmospheric electric current over a seismic region. J. Atmos. Sol.-Terr. Phys. 2006, 68, 1260–1268. [Google Scholar] [CrossRef]
- Denisenko, V.V.; Boudjada, M.Y.; Lammer, H. Propagation of Seismogenic Electric Currents through the Earth’s Atmosphere. J. Geophys Res. Space Phys. 2018, 123, 4290–4297. [Google Scholar] [CrossRef] [Green Version]
- Grimalsky, V.V.; Hayakawa, M.; Ivchenko, V.N.; Rapoport, Y.; Zadorozhnii, V.I. Penetration of an electrostatic field from the lithosphere into the ionosphere and its effects on the D-region before earthquakes. J. Atmos. Sol.-Terr. Phys. 2003, 65, 391–407. [Google Scholar] [CrossRef]
- Hegai, V.V.; Kim, V.P.; Liu, J.Y. On a possible seismomagnetic effect in the topside ionosphere. Adv. Space Res. 2015, 56, 1707–1713. [Google Scholar] [CrossRef]
Date EQ | UT (h:min) | M | R (km) | Lat (degree) | Long. (degree) |
---|---|---|---|---|---|
24 August 2016 | 01:36 | 6.0 | 117 | 42.7 | 13.2 |
26 October 2016 | 19:18 | 5.9 | 133 | 42.9 | 13.1 |
30 October 2016 | 06:40 | 6.1 | 125 | 42.8 | 13.1 |
Date of Observed Ionospheric Anomaly | UT Hour | Δh’Es (km) | δfbEs | δfoF2 | ΔT (days) | Ap | Date of EQ | Geogr. Coord. | UT Hour | M | R (km) |
---|---|---|---|---|---|---|---|---|---|---|---|
24 April 1984 | 01:00–02:00 | 27 | 0.82 | 0.16 | 17.4 | 6 | 11 May 1984 | 41.7 N; 14.1 E | 10:41 | 5.7 | 133 |
2 September 1997 | 14:00–15:00 | 28 | 0.79 | 0.16 | 23.8 | 4 | 26 September 1997 | 43.0 N; 12.9 E | 09:40 | 5.8 | 137 |
2 October 1997 | 00:00–01:00 | 21 | 0.87 | 0.22 | 12.6 | 5 | 14 October 1997 | 43.0 N; 13.0 E | 15:23 | 5.5 | 140 |
3 March 2009 | 06:00–07:00 | 30 | 0.24 | 0.21 | 33.8 | 7 | 6 April 2009 | 42.3 N; 13.3 E | 01:32 | 5.8 | 90 |
13 September 2016 | 01:00–02:00 | 26 | 0.69 | 0.12 | 43.8 | 4 | 26 October 2016 | 42.9 N; 13.1 E | 19:18 | 5.9 | 133 |
13 August 2016 | 14:00–15:00 | 32 | 0.44 | 0.28 | 77.7 | 4 | 30 October 2016 | 42.8 N; 13.1 E | 06:40 | 6.1 | 125 |
Date of Observed Ionospheric Anomaly | UT Hour | Δh’Es (km) | δfbEs | δfoF2 | ΔT (days) | Ap | Date of EQ | Geogr. Coord. | UT Hour | M | R (km) |
---|---|---|---|---|---|---|---|---|---|---|---|
4 April 1984 | 00:00–01:00 | 37 | 0.25 | 0.30 | 33.8 | 84 | 7 May 1984 | 41.7 N; 14.1 E | 17:49 | 5.9 | 133 |
8 September 1997 | 05:00–06:00 | 19 | 0.61 | 0.16 | 17.8 | 12 | 26 September 1997 | 43.0 N; 12.9 E | 00:33 | 5.6 | 137 |
9 July 2016 | 03:00–05:00 | 36 | 0.71 | 0.25 | 46.0 | 7 | 24 August 2016 | 42.7 N; 13.2 E | 01:36 | 6.0 | 117 |
Date of Observed Ionospheric Anomaly | UT Hour | Δh’Es (km) | δfbEs | δfoF2 | Ap |
---|---|---|---|---|---|
12 May | 01:00–02:00 | 27 | 0.82 | 0.16 | 3 |
15 September | 03:00–04:00 | 15 | 0.50 | 0.26 | 6 |
6 October | 10:00–11:00 | 18 | 0.43 | 0.26 | 5 |
19 November | 14:00–15:00 | 13 | 1.50 | 0.30 | 1 |
12 December | 22:00–23:00 | 22 | 0.69 | 0.23 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ippolito, A.; Perrone, L.; De Santis, A.; Sabbagh, D. Ionosonde Data Analysis in Relation to the 2016 Central Italian Earthquakes. Geosciences 2020, 10, 354. https://doi.org/10.3390/geosciences10090354
Ippolito A, Perrone L, De Santis A, Sabbagh D. Ionosonde Data Analysis in Relation to the 2016 Central Italian Earthquakes. Geosciences. 2020; 10(9):354. https://doi.org/10.3390/geosciences10090354
Chicago/Turabian StyleIppolito, Alessandro, Loredana Perrone, Angelo De Santis, and Dario Sabbagh. 2020. "Ionosonde Data Analysis in Relation to the 2016 Central Italian Earthquakes" Geosciences 10, no. 9: 354. https://doi.org/10.3390/geosciences10090354
APA StyleIppolito, A., Perrone, L., De Santis, A., & Sabbagh, D. (2020). Ionosonde Data Analysis in Relation to the 2016 Central Italian Earthquakes. Geosciences, 10(9), 354. https://doi.org/10.3390/geosciences10090354