Reconstructing the Gorte and Spiaz de Navesele Landslides, NE of Lake Garda, Trentino Dolomites (Italy)
Abstract
:1. Introduction
2. Setting and Previous Work
2.1. Geographical Setting
- The Gorte deposits, studied herein, with a release area along the western Doss dei Frassini slope (Paternoster);
- “Marocche” (this term is described more in detail below) deposits from the Spiaz de Navesele–Salto della Capra release areas which are also studied in the present work and will be referred to as Spiaz de Navesele;
- Tomas (conical hillocks) around the town of Nago interpreted to relate to the Segron release area;
- Deposits known as Mala located at Passo San Giovanni and interpreted to be sourced from the northern slope of Doss dei Frassini.
2.2. Stratigraphic and Tectonic Setting
3. Methods
3.1. Field Survey and Remote Sensing
3.2. Cosmogenic 36Cl Exposure Dating
3.3. Reconstruction of Pre-Failure Topography and Volume Estimation
3.4. Runout Modeling
4. Results
4.1. Geomorphology and Age of the Gorte and the Spiaz de Navesele Landslides
4.1.1. The Gorte Rock Avalanche
4.1.2. Spiaz de Navesele Rock Avalanche
4.2. Topographic Reconstruction and Volume Analysis
4.3. Runout Analysis
5. Discussion
5.1. Release and Emplacement of the Two Studied Landslides
5.1.1. The Gorte Rock Avalanche
5.1.2. The Spiaz de Navesele Rock Avalanche
5.1.3. Other Deposits in the Study Area
5.2. Causes, Triggers and Relationship with Other Large Landslides in the Region
6. Conclusions
- Despite the various uncertainties linked to the topographical reconstruction, the Gorte rock avalanche has a bedrock volume in the release area of about 70–75 Mm3, with a deposit volume of about 85–95 Mm3. The lithologies involved in the Gorte landslide are the Massone Oolite, the Rotzo and the Tofino Formations.
- The release area (Paternoster) is strongly affected by fractures related to regional-scale fault systems. The structural setting controls the bedding inclination to the west (25°–35°). The Schio-Vicenza fault system controls the WNW–ESE-oriented flanks of the landslide, whereas the backscarp is formed by an important NNE–SSW fault belonging to the Giudicarie fault system. The flow was initially a translational rock slide with associated toppling from the surrounding steep scarps.
- The Gorte rock avalanche deposit is characterized by large hummocks, both longitudinal and transversal to the rock mass flow. Within the deposit, secondary failures occurred. The blocky carapace is not homogeneously distributed, but there are zones with abundant large blocks, while other areas are completely boulder-free.
- Our 36Cl boulder exposure dates underpin the hypothesis that the Gorte rock avalanche happened in a single event. The age obtained is 6.1 ± 0.8 ka.
- The Gorte rock avalanche dates to a relatively warm and dry period of the Middle Holocene. Nevertheless, a period of frequent flooding at 6900–6200 was recognized for the region and overlaps the timing of the Gorte rock avalanche. The age is comparable to the age of the Dosso Gardene landslide (6630–6290 cal BP), as well as the Marocca Principale (5.3 ± 0.9 ka), both within 15 km. The important seismic activity still ongoing nowadays makes it likely that the trigger of the landslide may have been seismic activity.
- The Gorte landslide was characterized by initial rock sliding followed by disintegration and spreading. To simulate the flow of the rock avalanche, using Dan3D-Flex, two different rheologies were tested. The model that reproduced the best results used a frictional rheology in the source area with a friction angle of 14°, and a turbulent frictional rheology (Voellmy) in the rest of the area, with a friction coefficient of 0.38 and a turbulence coefficient of 700 m/s2.
- The sliding of Spiaz de Navesele–Salto della Capra took place south of Gorte, involving the Tofino Formation. The related deposit, named Marocche, formed a hummock over the Busatte area.
- The sliding of Spiaz de Navesele–Salto della Capra took place at the same time or immediately after the Gorte rock avalanche: it was dated to 5.9 ± 0.4 ka, but by means of a single bedrock sample. It is not to be excluded that the sliding took place in several phases, with more or less regular detachments over the millennia. A second sample, a boulder in the deposit, indicates an age of 2.4 ± 0.2 ka, but anthropogenic influence cannot be excluded.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossato, S.; Martin, S.; Ivy-Ochs, S.; Viganò, A.; Vockenhuber, C.; Rigo, M.; Surian, N.; Mozzi, P. Post-LGM Catastrophic Landslides in the Dolomites: When, Where and Why. Alp. Mediterr. Quat. 2018, 31, 239–242. [Google Scholar]
- Rossato, S.; Ghirotti, M.; Gabrieli, F.; Livio, F.; Bovo, F.; Brezzi, L.; Campedel, P.; Cola, S.; Ivy-Ochs, S.; Martin, S.; et al. Learning from the Past to Face the Future: Landslides in the Piave Valley (Eastern Alps, Italy). Alp. Mediterr. Quat. 2020, 33, 209–228. [Google Scholar] [CrossRef]
- Strouth, A.; McDougall, S. Societal Risk Evaluation for Landslides: Historical Synthesis and Proposed Tools. Landslides 2021, 18, 1071–1085. [Google Scholar] [CrossRef]
- Kremer, K.; Simpson, G.; Girardclos, S. Giant Lake Geneva Tsunami in AD 563. Nat. Geosci. 2012, 5, 756–757. [Google Scholar] [CrossRef]
- Köpfli, P.; Grämiger, L.M.; Moore, J.R.; Vockenhuber, C.; Ivy-Ochs, S. The Oeschinensee Rock Avalanche, Bernese Alps, Switzerland: A Co-Seismic Failure 2300 Years Ago? Swiss J. Geosci. 2018, 111, 205–219. [Google Scholar] [CrossRef]
- Semenza, E.; Ghirotti, M. History of the 1963 Vaiont Slide: The Importance of Geological Factors. Bull. Eng. Geol. Environ. 2000, 59, 87–97. [Google Scholar] [CrossRef]
- Aaron, J.; McDougall, S. Rock Avalanche Mobility: The Role of Path Material. Eng. Geol. 2019, 257, 105126. [Google Scholar] [CrossRef]
- McDougall, S.; Hungr, O. Dynamic Modelling of Entrainment in Rapid Landslides. Can. Geotech. J. 2005, 42, 1437–1448. [Google Scholar] [CrossRef]
- Weidinger, J.T.; Korup, O.; Munack, H.; Altenberger, U.; Dunning, S.A.; Tippelt, G.; Lottermoser, W. Giant Rockslides from the Inside. Earth Planet. Sci. Lett. 2014, 389, 62–73. [Google Scholar] [CrossRef]
- Dufresne, A.; Dunning, S.A. Process Dependence of Grain Size Distributions in Rock Avalanche Deposits. Landslides 2017, 14, 1555–1563. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Okeke, A.C.U.; Kogure, T.; Sakai, T.; Hayashi, H. Assessing the Internal Structure of Landslide Dams Subject to Possible Piping Erosion by Means of Microtremor Chain Array and Self-Potential Surveys. Eng. Geol. 2018, 234, 11–26. [Google Scholar] [CrossRef]
- Von Wartburg, J.; Ivy-Ochs, S.; Aaron, J.; Martin, S.; Leith, K.; Rigo, M.; Vockenhuber, C.; Campedel, P.; Viganò, A. Constraining the Age and Source Area of the Molveno Landslide Deposits in the Brenta Group, Trentino Dolomites (Italy). Front. Earth Sci. 2020, 8, 164. [Google Scholar] [CrossRef]
- Singeisen, C.; Ivy-Ochs, S.; Wolter, A.; Steinemann, O.; Akçar, N.; Yesilyurt, S.; Vockenhuber, C. The Kandersteg Rock Avalanche (Switzerland): Integrated Analysis of a Late Holocene Catastrophic Event. Landslides 2020, 17, 1297–1317. [Google Scholar] [CrossRef]
- Mitchell, A.; McDougall, S.; Nolde, N.; Brideau, M.A.; Whittall, J.; Aaron, J.B. Rock Avalanche Runout Prediction Using Stochastic Analysis of a Regional Dataset. Landslides 2020, 17, 777–792. [Google Scholar] [CrossRef]
- Zerathe, S.; Lebourg, T.; Braucher, R.; Bourlès, D. Mid-Holocene Cluster of Large-Scale Landslides Revealed in the Southwestern Alps by 36Cl Dating. Insight on an Alpine-Scale Landslide Activity. Quat. Sci. Rev. 2014, 90, 106–127. [Google Scholar] [CrossRef]
- Ivy-Ochs, S.; Martin, S.; Campedel, P.; Hippe, K.; Alfimov, V.; Vockenhuber, C.; Andreotti, E.; Carugati, G.; Pasqual, D.; Rigo, M.; et al. Geomorphology and Age of the Marocche Di Dro Rock Avalanches (Trentino, Italy). Quat. Sci. Rev. 2017, 169, 188–205. [Google Scholar] [CrossRef]
- Rossato, S.; Ivy-Ochs, S.; Martin, S.; Viganò, A.; Vockenhuber, C.; Rigo, M.; Monegato, G.; de Zorzi, M.; Surian, N.; Campedel, P.; et al. Timing, Drivers and Impacts of the Historic Masiere Di Vedana Rock Avalanche (Belluno Dolomites, NE Italy). Nat. Hazards Earth Syst. Sci. 2020, 20, 2157–2174. [Google Scholar] [CrossRef]
- Oswald, P.; Strasser, M.; Hammerl, C.; Moernaut, J. Seismic Control of Large Prehistoric Rockslides in the Eastern Alps. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Viganò, A.; Rossato, S.; Martin, S.; Ivy-Ochs, S.; Zampieri, D.; Rigo, M.; Monegato, G. Large Landslides in the Alpine Valleys of the Giudicarie and Schio-Vicenza Tectonic Domains (NE Italy). J. Maps 2021, 17, 197–208. [Google Scholar] [CrossRef]
- Prager, C.; Zangerl, C.; Patzelt, G.; Brandner, R. Age Distribution of Fossil Landslides in the Tyrol (Austria) and Its Surrounding Areas. Nat. Hazards Earth Syst. Sci. 2008, 8, 377–407. [Google Scholar] [CrossRef]
- Hovius, N.; Stark, C.P.; Allen, P.A. Sediment Flux from a Mountain Belt Derived by Landslide Mapping. Geology 1997, 25, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Korup, O.; Clague, J.J. Natural Hazards, Extreme Events, and Mountain Topography. Quat. Sci. Rev. 2009, 28, 977–990. [Google Scholar] [CrossRef]
- Huggel, C.; Gruber, S.; Korup, O. Landslide Hazards and Climate Change in High Mountains. Treatise Geomorphol. 2013, 13, 288–301. [Google Scholar] [CrossRef]
- Grämiger, L.M.; Moore, J.R.; Vockenhuber, C.; Aaron, J.; Hajdas, I.; Ivy-Ochs, S. Two Early Holocene Rock Avalanches in the Bernese Alps (Rinderhorn, Switzerland). Geomorphology 2016, 268, 207–221. [Google Scholar] [CrossRef]
- Aksay, S.; Ivy-Ochs, S.; Hippe, K.; Grämiger, L.; Vockenhuber, C. Slope Failure in a Period of Increased Landslide Activity: Sennwald Rock Avalanche, Switzerland. Geosciences 2021, 11, 331. [Google Scholar] [CrossRef]
- Ivy-Ochs, S.; Martin, S.; Campedel, P.; Hippe, K.; Vockenhuber, C.; Carugati, G.; Rigo, M.; Pasqual, D.; Viganò, A. Geomorphology and Age of Large Rock Avalanches in Trentino (Italy): Castelpietra. In Proceedings of the 4th World Landslide Forum: Landslide Research and Risk Reduction for Advancing the Culture of Living with Natural Hazards, Ljubljana, Slovenia, 29 May–2 June 2017; pp. 347–353. [Google Scholar] [CrossRef]
- Oetheimer, C. Etude Géomorphologique Des Éboulements Remaniés de La Vallée de Tovel: Contribution à La Connaissance Des «marocche» Du Trentin (Italie). Studi trentini di scienze naturali. Acta Geol. 1989, 65, 3–47. [Google Scholar]
- Perna, G. Itinerari geologici: La Marocca Di Gorte. Econ. Trent. 1991, 4, 65–88. [Google Scholar]
- Perna, G. Inquadramento Cronologico Delle Grandi Frane Quaternarie Delle Valli Dei Laghi e Del Basso Sarca. Econ. Trent. 1996, 3, 55–89. [Google Scholar]
- Martin, S.; Campedel, P.; Ivy-Ochs, S.; Viganò, A.; Alfimov, V.; Vockenhuber, C.; Andreotti, E.; Carugati, G.; Pasqual, D.; Rigo, M. Lavini Di Marco (Trentino, Italy): 36Cl Exposure Dating of a Polyphase Rock Avalanche. Quat. Geochronol. 2014, 19, 106–116. [Google Scholar] [CrossRef]
- Orombelli, G.; Sauro, U. I Lavini Di Marco: Un Gruppo Di Frane Oloceniche Nel Contesto Morfoneotettonico Dell’alta Val Lagarina (Trentino). Suppl. Geogr. Fis. Din. Quat. 1988, 1, 107–116. [Google Scholar]
- Castellarin, A.; Vai, G.B.; Cantelli, L. The Alpine Evolution of the Southern Alps around the Giudicarie Faults: A Late Cretaceous to Early Eocene Transfer Zone. Tectonophysics 2006, 414, 203–223. [Google Scholar] [CrossRef]
- Picotti, V.; Prosser, G.; Castellarin, A. Structures and Kinematics of the Giudicarie-Val Trompia Fold and Thrust Belt (Central Southern Alps, Northern Italy). Mem. Sci. Geol. 1995, 47, 95–109. [Google Scholar]
- Bini, A.; Cita, M.B.; Gaetani, M. Southern Alpine Lakes—Hypothesis of an Erosional Origin Related to the Messinian Entrenchment. Mar. Geol. 1978, 27, 271–288. [Google Scholar] [CrossRef]
- Finckh, P.G. Are Southern Alpine Lakes Former Messinian Canyons?—Geophysical Evidence for Preglacial Erosion in the Southern Alpine Lakes. Mar. Geol. 1978, 27, 289–302. [Google Scholar] [CrossRef]
- Winterberg, S.; Picotti, V.; Willett, S.D. Messinian or Pleistocene Valley Incision within the Southern Alps. Swiss J. Geosci. 2020, 113, 1–14. [Google Scholar] [CrossRef]
- Viganò, A.; Bressan, G.; Ranalli, G.; Martin, S. Focal Mechanism Inversion in the Giudicarie-Lessini Seismotectonic Region (Southern Alps, Italy): Insights on Tectonic Stress and Strain. Tectonophysics 2008, 460, 106–115. [Google Scholar] [CrossRef]
- Viganò, A.; Scafidi, D.; Ranalli, G.; Martin, S.; della Vedova, B.; Spallarossa, D. Earthquake Relocations, Crustal Rheology, and Active Deformation in the Central-Eastern Alps (N Italy). Tectonophysics 2015, 661, 81–98. [Google Scholar] [CrossRef]
- Guidoboni, E.; Ferrari, G.; Tarabusi, G.; Sgattoni, G.; Comastri, A.; Mariotti, D.; Ciuccarelli, C.; Bianchi, M.G.; Valensise, G. CFTI5Med, the New Release of the Catalogue of Strong Earthquakes in Italy and in the Mediterranean Area. Sci. Data 2019, 6, 1–15. [Google Scholar] [CrossRef]
- Gasperini, L.; Marzocchi, A.; Mazza, S.; Miele, R.; Meli, M.; Najjar, H.; Michetti, A.M.; Polonia, A. Morphotectonics and Late Quaternary Seismic Stratigraphy of Lake Garda (Northern Italy). Geomorphology 2020, 371, 107427. [Google Scholar] [CrossRef]
- Castellarin, A.; Trombetta, G.L.; Picotti, V.; Cantelli, L.; Claps, M.; Luigi, S.; Carton, A.; Borsato, A.; Daminato, F.; Nardin, M.; et al. Note Illustrative Della Carta Geologica d’ Italia- Foglio 080 Riva Del Garda; APAT—Servizio Geologico d’Italia: Firenze, Italy, 2005.
- Campedel, P.; Zumiani, M. Realizzazione Del Collegamento Stradale Passo Di San Giovanni—Località Cretaccio. Relazione Geologica; Pronvincia Autonoma di Trento: Trento, Italy, 2017. [Google Scholar]
- Vacek, M. Geologische Spezialkarte Der Im Reichsrate Vertretenen Königreiche Und Länder Der Österreichisch-Ungarischen Monarchie—Zone 22, Col. IV, Rovereto Und Riva; K.K. Geologische Reichsanstalt: Wien, Austria, 1903.
- Habbe, K.A. Die Würmzeitliche Vergletscherung Des Gardasee-Gebietes. Freibg. Geogr. Arb. 1969, 3, 254. [Google Scholar]
- Valle, C.; Santuliana, E. Opera Nr. 436. Collegamento ”Loppio-Busa” Sulla S.S.240 e Circonvallazione Di Torbole. Progetto Preliminare e Studio V.I.A., Tavola Geologia, Relazione Geologica-Geotecnica; Provincia Autonoma di Trento: Trento, Italy, 2008. [Google Scholar]
- Castellarin, A.; Cantelli, L. Neo-Alpine Evolution of the Southern Eastern Alps. J. Geodyn. 2000, 30, 251–274. [Google Scholar] [CrossRef]
- Provincia Autonoma di Trento LIDA RRilievo 2006/2007/2008. Available online: http://www.territorio.provincia.tn.it/portal/server.pt/community/lidar/847/lidar/23954 (accessed on 21 August 2021).
- Provincia Autonoma di Trento Carta Della Pericolosità e Carta Di Sintesi Della Pericolosità-Section N. 80110-Riva Del Garda; Provincia Autonoma di Trento: Trento, Italy, 2020.
- Ivy-Ochs, S.; Kober, F. Surface Exposure Dating with Cosmogenic Nuclides. EG Quat. Sci. J. 2008, 57, 179–209. [Google Scholar] [CrossRef] [Green Version]
- Ivy-Ochs, S.; Synal, H.A.; Roth, C.; Schaller, M. Initial Results from Isotope Dilution for Cl and 36Cl Measurements at the PSI/ETH Zurich AMS Facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 223, 623–627. [Google Scholar] [CrossRef]
- Christl, M.; Vockenhuber, C.; Kubik, P.W.; Wacker, L.; Lachner, J.; Alfimov, V.; Synal, H.A. The ETH Zurich AMS Facilities: Performance Parameters and Reference Materials. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 294, 29–38. [Google Scholar] [CrossRef]
- Vockenhuber, C.; Miltenberger, K.U.; Synal, H.A. 36Cl Measurements with a Gas-Filled Magnet at 6 MV. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019, 455, 190–194. [Google Scholar] [CrossRef]
- Synal, H.A.; Bonani, G.; Döbeli, M.; Ender, R.M.; Gartenmann, P.; Kubik, P.W.; Schnabel, C.; Suter, M. Status Report of the PSI/ETH AMS Facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1997, 123, 62–68. [Google Scholar] [CrossRef]
- Alfimov, V.; Ivy-Ochs, S. How Well Do We Understand Production of 36Cl in Limestone and Dolomite? Quat. Geochronol. 2009, 4, 462–474. [Google Scholar] [CrossRef]
- Stone, J.O.; Allan, G.L.; Fifield, L.K.; Cresswell, R.G. Cosmogenic Chlorine-36 from Calcium Spallation. Geochim. Cosmochim. Acta 1996, 60, 679–692. [Google Scholar] [CrossRef]
- Stone, J.O.H.; Evans, J.M.; Fifield, L.K.; Allan, G.L.; Cresswell, R.G. Cosmogenic Chlorine-36 Production in Calcite by Muons. Geochim. Cosmochim. Acta 1998, 62, 433–454. [Google Scholar] [CrossRef]
- Marrero, S.M.; Phillips, F.M.; Caffee, M.W.; Gosse, J.C. CRONUS-Earth Cosmogenic 36Cl Calibration. Quat. Geochronol. 2016, 31, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Balco, G.; Stone, J.O.; Lifton, N.A.; Dunai, T.J. A Complete and Easily Accessible Means of Calculating Surface Exposure Ages or Erosion Rates from 10Be and 26Al Measurements. Quat. Geochronol. 2008, 3, 174–195. [Google Scholar] [CrossRef]
- Steinemann, O.; Ivy-Ochs, S.; Grazioli, S.; Luetscher, M.; Fischer, U.H.; Vockenhuber, C.; Synal, H.-A. Quantifying Glacial Erosion on a Limestone Bed and the Relevance for Landscape Development in the Alps. Earth Surf. Process. Landf. 2020, 45, 1401–1417. [Google Scholar] [CrossRef]
- Scheidegger, A.E. On the Prediction of the Reach and Velocity of Catastrophic Landslides. Rock Mech. 1973, 5, 231–236. [Google Scholar] [CrossRef]
- Hungr, O.; Evans, S.G.; Hazzard, J. Magnitude and Frequency of Rock Falls and Rock Slides along the Main Transportation Corridors of Southwestern British Columbia. Can. Geotech. J. 1999, 36, 224–238. [Google Scholar] [CrossRef]
- Hungr, O.; Evans, S.G. Entrainment of Debris in Rock Avalanches: An Analysis of a Long Run-out Mechanism. Bull. Geol. Soc. Am. 2004, 116, 1240–1252. [Google Scholar] [CrossRef]
- Aaron, J.; Hungr, O. Dynamic Simulation of the Motion of Partially-Coherent Landslides. Eng. Geol. 2016, 205, 1–11. [Google Scholar] [CrossRef]
- McDougall, S.; Hungr, O. A Model for the Analysis of Rapid Landslide Motion across Three-Dimensional Terrain. Can. Geotech. J. 2004, 41, 1084–1097. [Google Scholar] [CrossRef]
- Hungr, O.; McDougall, S. Two Numerical Models for Landslide Dynamic Analysis. Comput. Geosci. 2009, 35, 978–992. [Google Scholar] [CrossRef]
- Aaron, J.; McDougall, S.; Nolde, N. Two Methodologies to Calibrate Landslide Runout Models. Landslides 2019, 16, 907–920. [Google Scholar] [CrossRef]
- Provincia Autonoma di Trento Reticolo Idrografico. Available online: https://webgis.provincia.tn.it/ (accessed on 21 August 2021).
- Baroni, C. Lake Garda: An Outstanding Archive of Quaternary Geomorphological Evolution. In Landscapes and Landforms of Italy; Soldati, M., Marchetti, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 169–179. [Google Scholar]
- Sosio, R.; Crosta, G.B.; Hungr, O. Complete Dynamic Modeling Calibration for the Thurwieser Rock Avalanche (Italian Central Alps). Eng. Geol. 2008, 100, 11–26. [Google Scholar] [CrossRef]
- Si, P.; Aaron, J.; McDougall, S.; Lu, J.; Yu, X.; Roberts, N.J.; Clague, J.J. A Non-Hydrostatic Model for the Numerical Study of Landslide-Generated Waves. Landslides 2017, 15, 711–726. [Google Scholar] [CrossRef]
- Dufresne, A.; Davies, T.R. Longitudinal Ridges in Mass Movement Deposits. Geomorphology 2009, 105, 171–181. [Google Scholar] [CrossRef]
- Von Poschinger, A.; Ruegg, T. Die Churer Tomahügel, Ein Besonderes Zeugnis Der Landschaftsgenese. Jahresbericht der Naturforschenden Gesellschaft Graubünden 2012, 117, 93–100. [Google Scholar]
- Prager, C.; Ivy-Ochs, S.; Ostermann, M.; Synal, H.A.; Patzelt, G. Geology and Radiometric 14C-, 36Cl- and Th-/U-Dating of the Fernpass Rockslide (Tyrol, Austria). Geomorphology 2009, 103, 93–103. [Google Scholar] [CrossRef]
- Montandon, F. Chronologie Des Grands Éboulements Alpins Du Début de l’ère Chrétienne à Nos Jours. Matériaux Pour l’étude des Calamités 1933, 32, 271–340. [Google Scholar]
- Monegato, G.; Scardia, G.; Hajdas, I.; Rizzini, F.; Piccin, A. The Alpine LGM in the Boreal Ice-Sheets Game. Sci. Rep. 2017, 7, 2078. [Google Scholar] [CrossRef]
- Ravazzi, C.; Pini, R.; Badino, F.; de Amicis, M.; Londeix, L.; Reimer, P.J. The Latest LGM Culmination of the Garda Glacier (Italian Alps) and the Onset of Glacial Termination. Age of Glacial Collapse and Vegetation Chronosequence. Quat. Sci. Rev. 2014, 105, 26–47. [Google Scholar] [CrossRef]
- Wolter, A.; Stead, D.; Ward, B.C.; Clague, J.J.; Ghirotti, M. Engineering Geomorphological Characterisation of the Vajont Slide, Italy, and a New Interpretation of the Chronology and Evolution of the Landslide. Landslides 2016, 13, 1067–1081. [Google Scholar] [CrossRef]
- Provincia Autonoma di Trento Catasto Grotte. Available online: https://webgis.provincia.tn.it/ (accessed on 21 August 2021).
- Pánek, T.; Hradecký, J.; Šilhán, K.; Smolková, V.; Altová, V. Time Constraints for the Evolution of a Large Slope Collapse in Karstified Mountainous Terrain of the Southwestern Crimean Mountains, Ukraine. Geomorphology 2009, 108, 171–181. [Google Scholar] [CrossRef]
- Sauro, F.; Zampieri, D.; Filipponi, M. Development of a Deep Karst System within a Transpressional Structure of the Dolomites in North-East Italy. Geomorphology 2013, 184, 51–63. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Parise, M.; de Waele, J.; Jourde, H. A Review on Natural and Human-Induced Geohazards and Impacts in Karst. Earth Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Viganò, A.; Scafidi, D.; Martin, S.; Spallarossa, D. Structure and Properties of the Adriatic Crust in the Central-Eastern Southern Alps (Italy) from Local Earthquake Tomography. Terra Nova 2013, 25, 504–512. [Google Scholar] [CrossRef]
- Martin, S.; Ivy-Ochs, S.; Viganò, A.; Campedel, P.; Rigo, M.; Vockenhuber, C.; Gabrieli, F.; Mair, V.; Rossato, S. Landslides of the Western Dolomites: Case Studies from the Adige and Sarca Valleys (NE Italy). Alp. Mediterr. Quat. 2020, 33, 191–207. [Google Scholar] [CrossRef]
- Rossato, S.; Fontana, A.; Mozzi, P. Meta-Analysis of a Holocene 14C Database for the Detection of Paleohydrological Crisis in the Venetian-Friulian Plain (NE Italy). Catena 2015, 130, 34–45. [Google Scholar] [CrossRef]
- Benito, G.; Macklin, M.G.; Panin, A.; Rossato, S.; Fontana, A.; Jones, A.F.; Machado, M.J.; Matlakhova, E.; Mozzi, P.; Zielhofer, C. Recurring Flood Distribution Patterns Related to Short-Term Holocene Climatic Variability. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gischig, V.; Preisig, G.; Eberhardt, E. Numerical Investigation of Seismically Induced Rock Mass Fatigue as a Mechanism Contributing to the Progressive Failure of Deep-Seated Landslides. Rock Mech. Rock Eng. 2016, 49, 2457–2478. [Google Scholar] [CrossRef]
- Loew, S.; Gschwind, S.; Gischig, V.; Keller-Signer, A.; Valenti, G. Monitoring and Early Warning of the 2012 Preonzo Catastrophic Rockslope Failure. Landslides 2017, 14, 141–154. [Google Scholar] [CrossRef]
- Bartlein, P.J.; Harrison, S.P.; Brewer, S.; Connor, S.; Davis, B.A.S.; Gajewski, K.; Guiot, J.; Harrison-Prentice, T.I.; Henderson, A.; Peyron, O.; et al. Pollen-Based Continental Climate Reconstructions at 6 and 21 Ka: A Global Synthesis. Clim. Dyn. 2011, 37, 775–802. [Google Scholar] [CrossRef] [Green Version]
- Routson, C.C.; McKay, N.P.; Kaufman, D.S.; Erb, M.P.; Goosse, H.; Shuman, B.N.; Rodysill, J.R.; Ault, T. Mid-Latitude Net Precipitation Decreased with Arctic Warming during the Holocene. Nature 2019, 568, 83–87. [Google Scholar] [CrossRef]
Sample | Latitude North (°) | Longitude East (°) | Elevation (m a.s.l.) | Thickness (cm) | Topographic Shielding | 36Cl Concentration 1 (106 atoms/gramrock) | Apparent Exposure Age (ka) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
GO5 | 45.8662 | 10.8903 | 370 | 2 | 0.956 | 0.168 | ± | 0.009 | 6.05 | ± | 0.37 |
GO6 | 45.8672 | 10.8914 | 368 | 2 | 0.992 | 0.173 | ± | 0.009 | 6.10 | ± | 0.37 |
GO7 | 45.8670 | 10.8942 | 387 | 1 | 0.989 | 0.208 | ± | 0.011 | 7.17 | ± | 0.46 |
GO8 | 45.8636 | 10.8903 | 355 | 1 | 0.967 | 0.157 | ± | 0.010 | 5.66 | ± | 0.40 |
GO9 | 45.8670 | 10.8863 | 277 | 2 | 0.933 | 0.171 | ± | 0.008 | 6.96 | ± | 0.41 |
GO10 | 45.8696 | 10.8856 | 274 | 2 | 0.958 | 0.122 | ± | 0.007 | 4.73 | ± | 0.32 |
NA3 | 45.8613 | 10.8796 | 196 | 2.5 | 0.969 | 0.057 | ± | 0.005 | 2.42 | ± | 0.24 |
NA4 | 45.8613 | 10.8812 | 205 | 2 | 0.968 | 0.144 | ± | 0.008 | 5.93 | ± | 0.37 |
NA5 | 45.8648 | 10.8805 | 172 | 2 | 0.978 | 0.131 | ± | 0.011 | 5.65 | ± | 0.49 |
NA6 | 45.8657 | 10.8815 | 165 | 2 | 0.968 | 0.146 | ± | 0.008 | 6.29 | ± | 0.40 |
Sample | Al2O3 | CaO | Fe2O3 | K2O | MgO | MnO | Na2O | P2O5 | SiO2 | TiO2 | Sm | Gd | U | Th | Cl | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | |||
GO5 | 0.1 | 54.94 | 0.05 | 0.03 | 0.39 | 0.006 | 0.03 | 0.02 | 0.28 | 0.003 | 0.1 | 0.1 | 0.6 | <0.1 | 13.5 | ± | 0.1 |
GO6 | 0.07 | 54.32 | 0.05 | 0.01 | 0.39 | 0.007 | 0.03 | 0.01 | 0.22 | 0.001 | <0.1 | 0.1 | 0.7 | <0.1 | 11.1 | ± | 0.1 |
GO7 | 0.08 | 54.44 | 0.04 | 0.02 | 0.37 | 0.006 | 0.03 | <0.01 | 0.21 | 0.001 | 0.1 | 0.1 | 0.6 | <0.1 | 12.0 | ± | 0.1 |
GO8 | 0.11 | 54.62 | 0.06 | 0.03 | 0.41 | 0.006 | 0.03 | 0.02 | 0.28 | 0.003 | 0.1 | 0.2 | 0.6 | <0.1 | 13.4 | ± | 0.1 |
GO9 | 0.18 | 53.78 | 0.17 | 0.05 | 0.65 | 0.018 | 0.03 | 0.01 | 0.66 | 0.008 | 1.3 | 1.6 | 1.5 | 0.3 | 14.2 | ± | 0.1 |
GO10 | 0.11 | 54.74 | 0.05 | 0.03 | 0.48 | 0.005 | 0.03 | 0.02 | 0.37 | 0.003 | 0.1 | 0.2 | 0.5 | <0.1 | 15.4 | ± | 0.1 |
NA3 | 0.51 | 52.59 | 0.29 | 0.12 | 1.27 | 0.020 | 0.04 | 0.04 | 1.87 | 0.028 | 1.2 | 1.5 | 0.3 | 0.6 | 13.8 | ± | 0.1 |
NA4 | 0.09 | 54.66 | 0.06 | 0.02 | 0.42 | 0.008 | 0.03 | <0.01 | 0.32 | 0.002 | 0.2 | 0.2 | 0.6 | <0.1 | 13.9 | ± | 0.1 |
NA5 | 0.26 | 52.48 | 0.14 | 0.08 | 1.51 | 0.023 | 0.03 | 0.02 | 0.76 | 0.013 | 0.9 | 1.1 | 0.1 | 0.3 | 16.5 | ± | 0.1 |
NA6 | 0.18 | 54.04 | 0.16 | 0.05 | 0.42 | 0.015 | 0.03 | 0.03 | 0.76 | 0.008 | 1 | 1.3 | 0.2 | 0.3 | 15.2 | ± | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggia, G.; Ivy-Ochs, S.; Aaron, J.; Steinemann, O.; Martin, S.; Rigo, M.; Rossato, S.; Vockenhuber, C.; Monegato, G.; Viganò, A. Reconstructing the Gorte and Spiaz de Navesele Landslides, NE of Lake Garda, Trentino Dolomites (Italy). Geosciences 2021, 11, 404. https://doi.org/10.3390/geosciences11100404
Ruggia G, Ivy-Ochs S, Aaron J, Steinemann O, Martin S, Rigo M, Rossato S, Vockenhuber C, Monegato G, Viganò A. Reconstructing the Gorte and Spiaz de Navesele Landslides, NE of Lake Garda, Trentino Dolomites (Italy). Geosciences. 2021; 11(10):404. https://doi.org/10.3390/geosciences11100404
Chicago/Turabian StyleRuggia, Giacomo, Susan Ivy-Ochs, Jordan Aaron, Olivia Steinemann, Silvana Martin, Manuel Rigo, Sandro Rossato, Christof Vockenhuber, Giovanni Monegato, and Alfio Viganò. 2021. "Reconstructing the Gorte and Spiaz de Navesele Landslides, NE of Lake Garda, Trentino Dolomites (Italy)" Geosciences 11, no. 10: 404. https://doi.org/10.3390/geosciences11100404
APA StyleRuggia, G., Ivy-Ochs, S., Aaron, J., Steinemann, O., Martin, S., Rigo, M., Rossato, S., Vockenhuber, C., Monegato, G., & Viganò, A. (2021). Reconstructing the Gorte and Spiaz de Navesele Landslides, NE of Lake Garda, Trentino Dolomites (Italy). Geosciences, 11(10), 404. https://doi.org/10.3390/geosciences11100404