Deep-Water Accumulation of Volcaniclastic Detritus from a Petrographic Point of View: Beginning a Discussion from the Alpine Peripheral Basins
Abstract
:1. Introduction
2. Volcaniclastic Sequences within the Alpine Peripheral Basins
2.1. Taveyanne Sandstones
2.2. Cibrone Formation
2.3. Val d’Aveto Formation
3. Gazzi–Dickinson versus Folk Methodology
3.1. Point-Counting Methodologies
3.2. Ternary Diagrams
4. Application
4.1. Taveyanne Sandstones
4.2. Cibrone Formation
4.3. Val d’Aveto Formation
5. Discussion
5.1. Massive Erosion of Volcanic Terranes versus Explosive Volcanic Activity
5.2. Variation of Lithic Geochemistry and Textures: Single versus Multiple Sources
5.3. Crystal Enrichments: Is Maturation Necessary?
6. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, J.-L.; Le Ruyet, A.; Chanier, F.; Buret, C.; Ferrière, J.; Proust, J.-N.; Rosseel, J.-B. Primary or secondary distal volcaniclastic turbidites: How to make the distinction? An example from the Miocene of New Zealand (Mahia Peninsula, North Island). Sediment. Geol. 2001, 145, 1–22. [Google Scholar] [CrossRef]
- Di Capua, A.; Groppelli, G. The riddle of volcaniclastic sedimentation in ancient deep-water basins: A discussion. Sediment. Geol. 2018, 378, 52–60. [Google Scholar] [CrossRef]
- Rossignol, C.; Hallot, E.; Bourquin, S.; Poujol, M.; Jolivet, M.; Pellenard, P.; Ducassou, C.; Nalpas, T.; Heilbronn, G.; Yu, J.; et al. Using volcaniclastic rocks to constrain sedimentation age: To what extent are volcanism and sedimentation synchronous? Sediment. Geol. 2019, 381, 46–64. [Google Scholar] [CrossRef] [Green Version]
- White, J.D.L.; Houghton, B.F. Primary volcaniclastic rocks. Geology 2006, 34, 677–680. [Google Scholar] [CrossRef]
- Nichols, G. Sedimentology and Stratigraphy, 2nd ed.; Wiley-Blackwell: London, UK, 2009; p. 432. [Google Scholar]
- Smith, G.A. Facies Sequences and Geometries in Continental Volcaniclastic Sediments. In Sedimentation in Volcanic Settings; Fisher, R.V., Smith, G.A., Eds.; SEPM (Society for Sedimentary Geology): Tulsa, OK, USA, 1991; p. 13. [Google Scholar]
- Manville, V.; Németh, K.; Kano, K. Source to sink: A review of three decades of progress in the understanding of volcanic processes, deposits, and hazards. Sediment. Geol. 2007, 220, 136–161. [Google Scholar] [CrossRef]
- Di Capua, A.; Scasso, R. Sedimentological and petrographic evolution of a fluviolacustrine environment during the onset of volcanism: Volcanically-induced forcing of sedimentation and environmental responses. Sedimentology 2020, 67, 1879–1913. [Google Scholar] [CrossRef]
- Calder, E.S.; Sparks, R.S.J.; Gardeweg, M.C. Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile. J. Volcanol. Geotherm. Res. 2000, 104, 201–235. [Google Scholar] [CrossRef]
- Brand, B.D.; Mackaman-Lofland, C.; Pollock, N.M.; Bendaña, S.; Dawson, B.; Wichgers, P. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization—Mount St Helens, Washington (USA). J. Volcanol. Geotherm. Res. 2014, 276, 189–214. [Google Scholar] [CrossRef] [Green Version]
- Zuffa, G.G. (Ed.) Optical analyses on arenites: Influence of methodology on compositional results. In Provenance of Arenites; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1985; Volume 148, pp. 165–189. [Google Scholar]
- Zuffa, G.G. Unravelling hinterland and offshore paleogeography from deep-water arenites. In Deep-Marine Clastic Sedimentology: Concepts and Case Studies; Leggett, J.K., Zuffa, G.G., Eds.; Graham and Trotman: London, UK, 1987; pp. 39–61. [Google Scholar]
- Critelli, S.; Ingersoll, R.V. Interpretation of neovolcanic versus paleovolcanic sand grains: An example from Miocene deep-marine sandstone of the Topanga Group (Southern California). Sedimentology 1995, 42, 783–804. [Google Scholar] [CrossRef]
- Ruffini, R.; Polino, R.; Callegari, E.; Hunziker, J.C.; Pfeifer, H.R. Volcanic clast-rich turbidites of the Taveyanne sandstones from the Thônes syncline (Savoie, France): Records for a Tertiary postcollisional volcanism. Schweiz. Mineral. Petrogr. Mitt. 1997, 77, 161–174. [Google Scholar]
- Trofimovs, J.; Amy, L.; Boudon, G.; Deplus, C.; Doyle, E.; Fournier, N.; Hart, M.B.; Komorowski, J.C.; Le Friant, A.; Lock, E.J.; et al. Submarine pyroclastic deposits formed at the Soufrière Hills volcano, Montserrat (1995–2003): What happens when pyroclastic flows enter the ocean? Geology 2006, 34, 549–552. [Google Scholar] [CrossRef] [Green Version]
- Trofimovs, J.; Sparks, R.S.J.; Talling, P.J. Anatomy of a submarine pyroclastic flow and associated turbidity currents: July 2003 dome collapse, Soufrière Hills volcano, Montserrat, West Indies. Sedimentology 2008, 55, 617–634. [Google Scholar] [CrossRef]
- Di Capua, A.; Groppelli, G. Application of actualistic models to unravel primary volcanic control on sedimentation (Taveyanne Sandstones, Oligocene Northernalpine Foreland Basin). Sediment. Geol. 2016, 336, 147–160. [Google Scholar] [CrossRef]
- Di Capua, A.; Barilaro, F.; Groppelli, G. Volcanism and Volcanogenic Submarine Sedimentation in the Paleogene Foreland Basins of the Alps: Reassessing the Source-to-Sink Systems with an Actualistic View. Geosciences 2021, 11, 23. [Google Scholar] [CrossRef]
- Lateltin, O. Les Dépôts Turbiditiques Oligocènes D’avant-Pays Entre Annecy (Haute-Savoie) et le Sanetsch (Suisse). Ph.D. Thesis, Fribourg University, Fribourg, Switzerland, 1988; p. 127. [Google Scholar]
- Ruffini, R.; Cosca, M.A.; d’Atri, A.; Hunzicker, J.C.; Polino, R. The volcanic supply of the Taveyanne turbidites (Savoie, France): A riddle for Tertiary Alpine volcanism. Atti delle Accad. Sci. Roma 1995, 14, 359–376. [Google Scholar]
- Lu, G.; Winkler, W.; Rahn, M.; von Quadt, A.; Willet, S.D. Evaluating igneous sources of the Taveyannaz Formation in the Central Alps by detrital zircon U-Pb age dating and geochemistry. Swiss J. Geosci. 2018, 111, 399–416. [Google Scholar] [CrossRef]
- Lu, G.; Di Capua, A.; Winkler, W.; Rahn, M.; Guillong, M.; von Quadt, A.; Willet, S.D. Restoring the source-to-sink relationships in the Paleogene foreland basins in the Central and Southern Alps (Switzerland, Italy, France): A detrital zircon study approach. Int. J. Earth Sci. 2019, 108, 1817–1834. [Google Scholar] [CrossRef]
- Gavazzi, A.; Miletta, S.; Sciunnach, D.; Tremolada, F. Eocene plagioclase-arenites from the Southern Alps: Record of a “meso-Alpine” volcanic arc. Ann. Uniservitatis Sci. Bp. Sect. Geol. 2003, 35, 102–103. [Google Scholar]
- Di Giulio, A.; Dunkl, I.; Falletti, P.; Sciunnach, D. Plagioclas-arenites from the Northern Apennines and Southern Alps: Record of a Paleogene island arc related to Alpine subduction. In Proceedings of the 7th Alpine Workshop, Opatija, Croatia, 29 September–1 October 2005. [Google Scholar]
- Malusà, M.G.; Villa, I.M.; Vezzoli, G.; Garzanti, E. Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth Planet. Sci. Lett. 2011, 301, 324–336. [Google Scholar] [CrossRef]
- Premoli Silva, I.; Tremolada, F.; Sciunnach, D.; Scardia, G. Aggiornamenti biocronologici e nuove interpretazioni ambientali sul Paleocene-Eocene della Brianza (Lombardia). Rend. Ist. Lomb. 2009. Available online: https://www.earthprints.org/handle/2122/5386 (accessed on 3 January 2021).
- Elter, P.; Catanzariti, R.; Ghiselli, F.; Marroni, M.; Molli, G.; Ottria, G.; Pandolfi, L. LʹUnità Aveto (Appennino Settentrionale): Caratteristiche litostratigrafiche, biografia, petrografia, delle areniti ed assetto strutturale. Boll. Della Soc. Geol. Ital. 1999, 118, 41–63. [Google Scholar]
- Di Capua, A.; Vezzoli, G.; Groppelli, G. Climatic, tectonic and volcanic controls of sediment supply to an Oligocene Foredeep basin: The Val d’Aveto Formation (Northern Italian Appennines). Sediment. Geol. 2016, 332, 68–84. [Google Scholar] [CrossRef]
- Di Capua, A.; Groppelli, G. Emplacement of pyroclastic density currents (PDCs) in a deep-sea environment: The Val d’Aveto Formation case (Northern Apennines, Italy). J. Volcanol. Geotherm. Res. 2016, 328, 1–8. [Google Scholar] [CrossRef]
- Mattioli, M.; Lustrino, M.; Ronca, S.; Bianchini, G. Alpine subduction imprint in Apennine volcaniclastic rocks. Geochemical petrographic constraints and geodynamic implications from Early Oligocene Aveto-Petrignacola Formation (N Italy). Lithos 2012, 134–135, 201–220. [Google Scholar] [CrossRef]
- Mattioli, M.; Di Battistini, G.; Zanzucchi, G. Geochemical features of the Tertiary buried Mortara volcanic body (Northern Apennines, Italy). Boll. Soc. Geol. Ital. 2002, 1, 239–249. [Google Scholar]
- Anfinson, O.A.; Malusà, M.G.; Ottria, G.; Davof, L.N.; Stockli, D.F. Tracking coarse-grained gravity flows by LASS-ICP-MS depth-profiling of detrital zircon (Aveto Formation, Adriatic foredeep, Italy). Mar. Pet. Geol. 2016, 1163–1176. [Google Scholar] [CrossRef]
- Garzanti, E. Petrographic classification of sand and sandstone. Earth-Sci. Rev. 2019, 192, 545–563. [Google Scholar] [CrossRef]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing CO.: Austin, TX, USA, 1968; p. 170. [Google Scholar]
- Gazzi, P. Le arenarie del flysch sopracretaceo dell’Appennino modenese: Correlazioni con il flysch di Monghidoro. Mineral. Petrogr. Acta 1966, 12, 69–97. [Google Scholar]
- Dickinson, W.R. Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites; Zuffa, G.G., Ed.; NATO ASI Series 148; Springer: Dordrecht, The Netherlands, 1985; pp. 333–361. [Google Scholar]
- Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.L.; Pickle, J.D.; Sares, S.W. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. J. Sediment. Petrol. 1984, 54, 0103–0116. [Google Scholar]
- Garzanti, E.; Vezzoli, G.; Andò, S. Paleogeographic and paleodrainage changes during Pleistocene glaciations (Po Plain, Northern Italy). Earth-Sci. Rev. 2011, 105, 25–48. [Google Scholar] [CrossRef]
- Franchi, F.; Kelepile, T.; Di Capua, A.; De Wit, M.C.J.; Kemiso, O.; Lasarwe, R.; Catuneanu, O. Lithostratigraphy, sedimentary petrography and geochemistry of the Upper Karoo Supergroup in the Central Kalahari Karoo Sub-Basin, Botswana. J. Afr. Earth Sci. 2021, 173, 104025. [Google Scholar] [CrossRef]
- Weltje, G.J. Ternary sandstone composition and provenance: An evaluation of the ‘Dickinson model’. In Compositional Data Analysis: From Theory to Practice; Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., Eds.; Geological Society of London: London, UK, 2006; Volume 264, pp. 611–627. [Google Scholar]
- Garzanti, E. From static to dynamic provenance analysis—sedimentary petrology upgraded. Sediment. Geol. 2016, 336, 3–13. [Google Scholar] [CrossRef]
- Bini, A.; Sciunnach, D.; Bersezio, R.; Scardia, G.; Tomasi, F. Note illustrative della Carta Geologica d’Italia alla scala 1:50000. Foglio Seregno. ISPRA; 2015. Available online: https://www.isprambiente.gov.it/Media/carg/96_SEREGNO/Foglio.html (accessed on 3 January 2021).
- Marroni, M.; Ottria, G.; Pandolfi, L. Note Illustrative Della Carta Geologica d’Italia Alla Scala 1:50000. Foglio Cabella Ligure. ISPRA; 2010. Available online: https://www.isprambiente.gov.it/Media/carg/196_CABELLA_LIGURE/Foglio.html (accessed on 3 January 2021).
- Németh, K.; Martin, U. Practical Volcanology—Lecture Notes for Understanding Volcanic Rocks from Field Based Studies; Geological Institute of Hungary: Budapest, Hungary, 2007; Volume 207, p. 220. [Google Scholar]
- Martì, J.; Groppelli, G.; da Silva, A.B. Volcanic stratigraphy: A review. J. Volcanol. Geotherm. Resour. 2018, 357, 68–91. [Google Scholar] [CrossRef]
- Calder, E.S.; Lavallé, Y.; Kendrick, J.E.; Bernstein, M. Lava Dome Eruptions. In Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., Stix, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; p. 1393. [Google Scholar]
- Plank, S.; Walter, T.R.; Martinis, S.; Cesca, S. Growth and collapse of a littoral lava dome during the 2018/19 eruption of Kadovar Volcano, Papua New Guinea, analyzed by multi-sensor satellite imagery. J. Volcanol. Geotherm. Res. 2009, 388, 106704. [Google Scholar] [CrossRef]
- Branney, M.J.; Kokelaar, P. Pyroclastic Density Currents and the Sedimentation of Ignimbrites. In Geological Society Memoir No.27; Geological Society of London: London, UK, 2002; p. 152. [Google Scholar]
- Heap, M.J.; Kolzenburg, S.; Russel, J.K.; Campbell, M.E.; Welles, J.; Farquharson, J.I.; Ryan, A. Conditions and timescales for welding block-and-ash flow deposits. J. Volcanol. Geotherm. Res. 2014, 289, 202–209. [Google Scholar] [CrossRef]
- Sinclair, H. Turbidite sedimentation during Alpine thrusting: The Taveyannaz sandstones of eastern Switzerland. Sedimentology 1992, 39, 837–856. [Google Scholar] [CrossRef]
- Cassidy, M.; Watt, S.F.L.; Palmer, M.R.; Trofimovs, J.; Symons, W.; Maclachlan, S.E.; Stinton, A.J. Construction of volcanic records from marine sediment cores: A review and case study (Montserrat, West Indies). Earth-Sci. Rev. 2014, 138, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, E.; Kennedy, B.M.; Lavallé, Y.; Hornby, A.; Edwards, M.; Chigna, G. Textural insights into the evolving lava dome cycles at Santiaguito Lava Dome, Guatemala. Front. Earth Sci. 2018, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, M.; Trofimovs, J.; Palmer, M.R.; Talling, P.J.; Watt, S.F.L.; Moreton, S.G.; Taylor, R.N. Timing and emplacement dynamics of newly recognised mass flow deposits at ~8–12 ka offshore Soufrière Hills volcano, Montserrat: How submarine stratigraphy can complement subaerial eruption histories. J. Volcanol. Geotherm. Res. 2013, 253, 1–14. [Google Scholar] [CrossRef]
- Závada, P.; Kratinová, Z.; Kusbach, V.; Schulmann, K. Internal fabric development in complex lava domes. Tectonophysics 2009, 466, 101–113. [Google Scholar] [CrossRef]
- Naranjo, J.A.; Sparks, R.S.J.; Stasiuk, M.V.; Moreno, H.; Ablay, G.J. Morphological, structural and textural variations in the 1988–1990 andesite lava of Lonquimay Volcano, Chile. Geol. Mag. 1992, 129, 657–678. [Google Scholar] [CrossRef]
- Szepesi, J.; Lukács, R.; Soós, I.; Benkó, Z.; Pécskay, Z.; Ésik, Z.; Kozák, M.; Di Capua, A.; Groppelli, G.; Norini, G.; et al. Telkibánya lava domes: Lithofacies architecture of a Miocene rhyolitefield (Tokaj Mountains, Carpathian-Pannonian region, Hungary). J. Volcanol. Geotherm. Res. 2019, 385, 179–197. [Google Scholar] [CrossRef]
- Di Capua, A.; Barilaro, F.; Szepesi, J.; Lukács, R.; Gál, P.; Norini, G.; Sulpizio, R.; Soós, I.; Harangi, S.; Groppelli, G. Correlating volcanic dynamics and the construction of a submarine volcanogenic apron: An example from the Badenian (Middle Miocene) of North-Eastern Hungary. Mar. Pet. Geol. 2021, 126, 104944. [Google Scholar] [CrossRef]
- Garzanti, E. The maturity myth in sedimentology and provenance analysis. J. Sediment. Res. 2017, 87, 353–365. [Google Scholar] [CrossRef]
- Riggs, N.; McConnell, B. Sedimentary response to ignimbrite emplacement across a fluvial–shallow marine transition: Ordovician Mweelrea Formation, South Mayo Trough, Western Ireland. Geol. J. 2017, 52, 667–680. [Google Scholar] [CrossRef]
- Whitham, A.G. The Behaviour of Subaerially Produced Pyroclastic Flows in A Subaqueous Environment: Evidence From The Roseau Eruption, Dominica, West Indies. Mar. Geol. 1989, 86, 27–40. [Google Scholar] [CrossRef]
- Tenuta, M.; Donato, P.; Dominici, R.; De Rosa, R. Volcanic Record in the Sands of a Modern Fluvial System: The Example Of The Ofanto River, Southern Italy. In Volcanic Processes in the Sedimentary Record: When Volcanoes Meet the Environment; Di Capua, A., De Rosa, R., Kereszturi, G., Le Pera, E., Rosi, M., Watt, S.F.L., Eds.; Geological Society of London: London, UK, 2021; in press; Special Issue 520. [Google Scholar]
- Critelli, S. Provenance of Mesozoic to Cenozoic circum-Mediterranean sandstones in relation to tectonic setting. Earth-Sci. Rev. 2018, 185, 624–648. [Google Scholar] [CrossRef]
- Fornelli, A.; Gallicchio, S.; Micheletti, F.; Langone, A. First U-Pb detrital zircon ages from Tufiti di Tusa Formation (Lucanian Apennines, Southern Italy): Evidence of Rupelian volcaniclastic supply. Minerals 2020, 10, 786. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Capua, A.; Barilaro, F.; Groppelli, G. Deep-Water Accumulation of Volcaniclastic Detritus from a Petrographic Point of View: Beginning a Discussion from the Alpine Peripheral Basins. Geosciences 2021, 11, 441. https://doi.org/10.3390/geosciences11110441
Di Capua A, Barilaro F, Groppelli G. Deep-Water Accumulation of Volcaniclastic Detritus from a Petrographic Point of View: Beginning a Discussion from the Alpine Peripheral Basins. Geosciences. 2021; 11(11):441. https://doi.org/10.3390/geosciences11110441
Chicago/Turabian StyleDi Capua, Andrea, Federica Barilaro, and Gianluca Groppelli. 2021. "Deep-Water Accumulation of Volcaniclastic Detritus from a Petrographic Point of View: Beginning a Discussion from the Alpine Peripheral Basins" Geosciences 11, no. 11: 441. https://doi.org/10.3390/geosciences11110441
APA StyleDi Capua, A., Barilaro, F., & Groppelli, G. (2021). Deep-Water Accumulation of Volcaniclastic Detritus from a Petrographic Point of View: Beginning a Discussion from the Alpine Peripheral Basins. Geosciences, 11(11), 441. https://doi.org/10.3390/geosciences11110441