Evidence of Mid-Holocene (Northgrippian Age) Dry Climate Recorded in Organic Soil Profiles in the Central Appalachian Mountains of the Eastern United States
Abstract
:1. Introduction
Project Area
2. Methodology
2.1. Field Methods
2.2. Laboratory Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, M.G.; Ciolkosz, E.J. Periglacial geomorphology of the Appalachian highlands and interior highlands south of the glacial border—A review. Geomorphology 1988, 1, 191–220. [Google Scholar] [CrossRef]
- Heath, S.L.; Loope, H.M.; Curry, B.B.; Lowell, T.V. Pattern of southern Laurentide Ice Sheet margin position changes during Heinrich Stadials 2 and 1. Quat. Sci. Rev. 2018, 201, 362–379. [Google Scholar] [CrossRef]
- Jackson, S.T.; Webb, R.S.; Anderson, K.H.; Overpeck, J.T.; Webb, T., III; Williams, J.W.; Hansen, B. Vegetation and environment in Eastern North America during the Last Glacial Maximum. Quat. Sci. Rev. 2000, 19, 489–508. [Google Scholar] [CrossRef]
- Lowell, T.V.; Savage, K.M.; Brockman, C.S.; Stuckenrath, R. Radiocarbon analysis from Cincinnati, Ohio and their implications for glacial stratigraphic interpretations. Quat. Res. 1990, 34, 1–11. [Google Scholar] [CrossRef]
- Delcourt, H.; Delcourt, P. Late Quaternary vegetational history in the central Atlantic States. Quat. Sci. Rev. 1987, 75, 23–35. [Google Scholar]
- French, H.; Millar, S. Permafrost at the time of the Last Glacial Maximum (LGM) in North America. Boreas 2014, 43, 667–677. [Google Scholar] [CrossRef]
- Nelson, K.; Nelson, F.; Walegur, M. Periglacial Appalachia: Palaeoclimatic significance of blockfield elevation gradients, eastern USA. Permafr. Periglac. Process. 2007, 18, 61–73. [Google Scholar] [CrossRef]
- Kneller, M.; Peteet, D. Late-Quaternary climate in the Ridge and Valley of Virginia, U.S.A.: Changes in vegetation and depositional environment: A contribution to the ‘North Atlantic seaboard programme’ of IGCP-253, ‘Termination of the Pleistocene’. Quat. Sci. Rev. 1993, 12, 613–628. [Google Scholar] [CrossRef]
- Yu, Z. Rapid response of forested vegetation to multiple climatic oscillations during the last deglaciation in the northeastern United States. Quat. Res. 2007, 67, 297–303. [Google Scholar] [CrossRef]
- Hou, J.; Huang, Y.; Shuman, B.N.; Oswald, W.W.; Foster, D.R. Abrupt cooling repeatedly punctuated early-Holocene climate in eastern North America. Holocene 2011, 22, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yu, Z.; Kodama, K.P. Sensitive moisture response to Holocene millennial-scale climate variations in the mid-Atlantic region, USA. Holocene 2007, 17, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Webb, R.S.; Anderson, K.H.; Webb, T., III. Pollen response-surface estimates of late-quaternary changes in the moisture balance of the northeastern United States. Quat. Res. 1993, 40, 213–227. [Google Scholar] [CrossRef]
- Willard, D.; Bernhardt, C.; Korejwo, D.; Meyers, S. Impact of millennial-scale Holocene climate variability on eastern North American terrestrial ecosystems: Pollen-based climatic reconstruction. Glob. Planet. Chang. 2005, 47, 17–35. [Google Scholar] [CrossRef]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.X. The ICS International Chronostratigraphic Chart. Episodes 2013, 36, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Head, M.J.; Gibbard, P.L. Formal subdivisions of the Quaternary System/Period: Past, present, and future. Quat. Int. 2015, 383, 4–35. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.J.C.; Berkelhammer, M.; Björck, S.; Cwynar, L.C.; Fisher, D.A.; Long, A.J.; Lowe, J.J.; Newnham, R.M.; Rasmussen, S.O.; Weiss, H. Formal subdivision of the Holocene Series/Epoch: A discussion paper by a Working Group of INTIMATE (Integration of ice-core marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J. Quat. Sci. 2012, 27, 649–659. [Google Scholar] [CrossRef]
- Walker, M.; Head, M.J.; Berkelhammer, M.; Björck, S.; Cheng, H.; Cwynar, L.; Fisher, D.; Gkinis, V.; Long, A.; Lowe, J.; et al. Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/Period): Two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/subseries. Episodes 2018, 41, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Daley, T.J.; Barber, K.E.; Hughes, P.D.M.; Loader, N.J.; Leuenberger, M.; Street-Perrott, F.A. The 8.2-ka BP event in north-eastern North America: First combined oxygen and hydrogen isotopic data from peat in Newfoundland. J. Quat. Sci. 2016, 3, 416–425. [Google Scholar] [CrossRef]
- Stinchcomb, G.E.; Messner, T.C.; Williamson, F.C.; Driese, S.G.; Nordt, L.C. Climatic and human controls on Holocene floodplain vegetation changes in eastern Pennsylvania based on the isotopic composition of soil organic matter. Quat. Res. 2013, 79, 377–390. [Google Scholar] [CrossRef]
- Zhao, C.; Yu, Z.; Ito, E.; Zhao, Y. Holocene climate trend, variability, and shift documented by lacustrine stable-isotope record in the northeastern United States. Quat. Sci. Rev. 2010, 29, 1831–1843. [Google Scholar] [CrossRef]
- Shuman, B.N.; Marsicek, J. The structure of Holocene climate change in mid-latitude North America. Quat. Sci. Rev. 2016, 141, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Viau, A.E.; Gajewski, K.; Sawada, M.C.; Fines, P. Millennial-scale temperature variations in North America during the Holocene. J. Geophys. Res. 2006, 111, 1–12. [Google Scholar] [CrossRef]
- Booth, R.K.; Jackson, S.T.; Forman, S.L.; Kutzbach, J.E.; Bettis, I.I.I.E.A.; Kreig, J.; Wright, D.K. A severe centennial-scale drought in mid-continental North America 4200 years ago and apparent global linkages. Holocene 2005, 15, 321–328. [Google Scholar] [CrossRef]
- Williams, J.W.; Blois, J.L.; Shuman, B.N. Extrinsic and Intrinsic forcing of abrupt ecological change: Case studies from the late. Quat. J. Ecol. 2011, 99, 664–677. [Google Scholar] [CrossRef]
- Barber, K.E.; Chambers, F.M.; Maddy, D. Holocene paleoclimates from peat stratigraphy: Macrofossil proxy climate records from three ocean raised bogs in England and Ireland. Quat. Sci. Rev. 2003, 22, 521–539. [Google Scholar] [CrossRef]
- Charman, D.J.; Barber, K.E.; Blaauw, M.; Langdon, P.G.; Mauquoy, D.; Daley, T.J.; Hughes, P.D.M.; Karofeld, E. Climate drivers for peatland paleoclimate records. Quat. Sci. Rev. 2009, 28, 1811–1819. [Google Scholar] [CrossRef] [Green Version]
- Charman, D.J.; Amesbury, M.J.; Hinchliffe, W.; Hughes, T.J.; Mallon, G.; Blake, W.H.; Daley, P.D.M.; Gallego-Sala, A.V.; Mauquoy, D. Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America. Quat. Sci. Rev. 2015, 121, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Ouyang, H.; Wang, G.; Xu, X. Recent peat accumulation rates in Zoige peatlands, eastern Tibet, inferred by 210Pb and 137Cs radiometric techniques. Procedia Environ. Sci. 2010, 2, 1927–1933. [Google Scholar] [CrossRef] [Green Version]
- Kalnina, L.; Stivrins, N.; Kuske, E.; Ozola, I.; Pujate, A.; Zeimule, S.; Grudzinska, I.; Ratniece, V. Peat Stratigraphy and Changes in Peat Formation during the Holocene in Latvia. Quat. Int. 2015, 383, 186–195. [Google Scholar] [CrossRef]
- Morris, P.; Swindles, P.; Valdes, P.; Ivanovic, R.; Gregoire, L.; Smith, M.; Tarasov, L.; Haywood, A.; Bacon, K. Global peatland initiation driven by regionally asynchronous warming. Proc. Natl. Acad. Sci. USA 2018, 115, 4851–4856. [Google Scholar] [CrossRef] [Green Version]
- Gałka, M.; Swindles, G.; Szal, M.; Fulweber, R.; Feurdean, A. Response of plant communities to climate change during the late Holocene: Palaeoecological insights from peatlands in the Alaskan Arctic. Ecol. Indic. 2018, 85, 525–536. [Google Scholar] [CrossRef]
- Vitt, D.H. Bryophyte Community Ecology: Going Beyond Description. Lindbergia 2006, 31, 33–41. [Google Scholar]
- Evans, M.G.; Warburton, J. Peatland geomorphology and carbon cycling. Geogr. Compass 2010, 4, 1513–1531. [Google Scholar] [CrossRef]
- Tuittila, E.; Juutinen, S.; Frolking, S.; Väliranta, M.; Laine, A.M.; Miettinen, A.; Seväkivi, M.; Quillet, A.; Merilä, P. Wetland chronosequence as a model of peatland development: Vegetation succession, peat and carbon accumulation. Holocene 2012, 23, 25–35. [Google Scholar] [CrossRef]
- Ovenden, L. Peat accumulation in northern wetlands. Quat. Res. 1990, 33, 377–386. [Google Scholar] [CrossRef]
- Vitt, D.H.; Wieder, R.K.; Scott, K.D.; Faller, S. Decomposition and peat accumulation in rich fens of boreal Alberta, Canada. Ecosystems 2009, 12, 360–373. [Google Scholar] [CrossRef]
- Clymo, R.S. The limits to peat bog growth. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1984, 303, 605–654. [Google Scholar]
- Lee, G.B.; Manoch, B. Macromorphology and micromorphology of a Wisconsin saprist. In Histosols: Their Characteristics, Classification, and Use; Aandahl, A.R., Boulm, S.W., Hill, D.E., Bailey, H.H., Eds.; Soil Science Society of America Special Publication: Madison, WI, USA, 1974; pp. 47–62. [Google Scholar]
- Barber, K.E. Peat stratigraphy and climate change: A palaeoecological test of the theory of cyclic peat bog regeneration. Quat. Int. 1981, 268, 1–8. [Google Scholar]
- Wieder, R.K.; Turetsky, M.R.; Vile, M.A. Peat as an archive of atmospheric, climatic and environmental conditions. In The Wetlands Handbook; Maltby, E., Barker, T., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2009; pp. 96–112. [Google Scholar]
- Chambers, F.M.; Beilman, D.W.; Yu, Z. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires Peat 2010, 7, 1–10. [Google Scholar]
- Frolking, S.; Roulet, N.T.; Moore, T.R.; Richard, P.J.H.; Lavoie, M.; Muller, S.D. Modeling northern peatland decomposition and peat accumulation. Ecosystems 2001, 4, 479–498. [Google Scholar] [CrossRef]
- Gunnarson, B.; Borgmark, A.; Wasteård, S. Holocene humidity fluctuations in Sweden inferred from dendrochronology and peat stratigraphy. Boreas 2003, 32, 347–360. [Google Scholar] [CrossRef]
- Castro, D.; Souto, M.; Garcia-Rodeja, E.; Pontevedra-Pombal, X.; Fraga, M.I. Climate change records between the mid- and late Holocene in a peat bog from Serra do Xistral (SW Europe) using plant macrofossils and peat humification analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 420, 82–95. [Google Scholar] [CrossRef]
- Blackford, J. Paleoclimatic records from peat bogs. Tree 2000, 15, 193–198. [Google Scholar]
- Langdon, P.G.; Brown, A.G.; Caseldine, C.J.; Blockley, S.P.E.; Stuijts, I. Regional climate change from peat stratigraphy for the mid- to late Holocene in central Ireland. Quat. Int. 2012, 268, 145–155. [Google Scholar] [CrossRef]
- Vitt, D.H.; Wieder, R.K. Boreal peatland ecosystems: Our carbon heritage. Ecol. Stud. Anal. Synth. 2006, 188, 425–430. [Google Scholar]
- Lin, H. Three principles of soil change and pedogenesis in time and space. Soil Sci. Soc. Am. J. 2011, 75, 2049–2070. [Google Scholar] [CrossRef] [Green Version]
- Nauman, T.W.; Thompson, J.A.; Teets, S.J.; Dilliplane, T.A.; Bell, J.W.; Connolly, S.J.; Liebermann, H.J.; Yoast, K.M. Ghosts of the forest: Mapping pedomemory to guide forest restoration. Geoderma 2015, 247–248, 51–64. [Google Scholar] [CrossRef]
- Targulian, V.O.; Goryachkin, S.V. Soil memory: Types of record, carriers, hierarchy and diversity. Rev. Mex. Cienc. Geológicas 2004, 21, 1–8. [Google Scholar]
- Halsey, L.A.; Vitt, D.H.; Gignac, L.D. Sphagnum-dominated peatlands in North America since the Last Glacial Maximum: Their occurrence and extent. Bryologist 2000, 103, 334–352. [Google Scholar] [CrossRef]
- Wieder, R.K.; Vitt, D.H. (Eds.) Boreal Peatland Ecosystems, Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2006; Volume 188, 436p. [Google Scholar]
- Fenneman, N.M.; Johnson, D.W. Physiographic Divisions of the United States; U.S. Geological Survey: Washington, DC, USA, 1946.
- Reger, J.; Cleaves, E. Physiographic Map of Maryland; Maryland Geological Survey: Baltimore, MD, USA, 2008.
- Sevon, W. Physiographic Provinces of Pennsylvania; Commonwealth of Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey: Harrisburg, PA, USA, 2018.
- West Virginia Geologic and Economic Survey. Physiographic Provinces of West Virginia; West Virginia Geologic and Economic Survey: Morgantown, WV, USA, 2017.
- Cameron, C.C. Peat Resources of the Unglaciated Uplands Along the Allegheny Structural Front in West Virginia, Maryland, and Pennsylvania; Geologic Survey Research 1970, Chapter D, Professional Paper 700-D; U.S. Geological Survey: Washington, DC, USA, 1970; pp. 153–161.
- Rigg, G.B.; Strausbaugh, P.D. Some stages in the development of sphagnum bogs in West Virginia. Castanea 1949, 14, 129–148. [Google Scholar]
- Walbridge, M.R. Plant community composition and surface water chemistry of fen peatlands in West Virginia’s Appalachian plateau. Water Air Soil Pollut. 1994, 77, 247–269. [Google Scholar] [CrossRef]
- Ingham, M.E. The Bog Region of the Allegheny Mountains of West Virginia. Ph.D. Thesis, University of South Florida, South Florida, FL, USA, 1996. [Google Scholar]
- Byers, E.A.; Vanderhorst, J.P.; Streets, B.P. Classification and Conservation Assessment of High Elevation Wetland Communities in the Allegheny Mountains of West Virginia. West Virginia Natural Heritage Program; WV Division of Natural Resources, Wildlife Resources Section: Elkins, WV, USA, 2007. Available online: http://www.wvdnr.gov/publications/PDFFiles/High%20Allegheny%20Wetlands-web.pdf (accessed on 26 October 2019).
- Larabee, P.A. Late-Quaternary vegetational and geomorphic history of the Allegheny Plateau at Big Run Bog, Tucker County, West Virginia. Ph.D. Thesis, The University of Tennessee, Knoxville, TN, USA, 1986. [Google Scholar]
- Fortney, R.H.; Rentch, J.S. Post logging era plant successional trends and geospatial vegetation patterns in Canaan Valley, West Virginia, 1945 to 2000. Castanea 2003, 68, 317–334. [Google Scholar]
- Matchen, D.L.; Fedorko, N.; Blake, B.M., Jr. Geology of Canaan Valley, West Virginia; Open File Publication OF-9902; Geological and Economic Survey: Morgantown, WV, USA, 1999.
- Matchen, D.L. The geology of Canaan Valley. Southeast. Nat. 2015, 14, 7–17. [Google Scholar] [CrossRef]
- Kost, M.A.; Albert, D.A.; Cohen, J.G.; Slaughter, B.S.; Schillo, R.K.; Weber, C.R.; Chapman, K.A. Natural Communities of Michigan: Classification and Description; Report No. 2007-21; Michigan Natural Features Inventory: Lansing, MI, USA, 2007. [Google Scholar]
- Losche, C.K.; Beverage, W.W. Soil Survey of Tucker County and Part of Northern Randolph County, West Virginia; Department of Agriculture, Soil Conservation Service: Washington, DC, USA, 1967.
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C.; Soil Survey Staff. Field Book for Describing and Sampling Soils; Version 3.0.; Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2012.
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. In U.S. Department of Agriculture Handbook, 2nd ed.; Natural Resources Conservation Service: Washington, DC, USA, 1999. [Google Scholar]
- Carlisle, S.C.; Mount, H.R.; Brown, J.H. The Mechanics of Soil Survey; Natural Resource Conservation Service, U.S. Department of Agriculture: Lincoln, NE, USA, 1998.
- De Vleeschouwer, F.; Chambers, F.M.; Swindles, G.T. Coring and sub-sampling of peatlands for palaeoenvironmental research. Mires Peat 2010, 7, 1. [Google Scholar]
- Keys, D.; Henderson, R.E. Field and Data Compilation Methods Used in the Inventory of the Peatlands of New Brunswick, Canada. In Testing of Peats and Organic Soils; Jarrett, P.M., Ed.; American Society for Testing and Materials: West Conshohocken, PA, USA, 1983; pp. 55–71. [Google Scholar]
- Klemetti, V.; Keys, D. Relationships between Dry Density, Moisture Content, and Decomposition of Some New Brunswick Peats. In Testing of Peats and Organic Soils; Jarrett, P.M., Ed.; American Society for Testing and Materials: West Conshohocken, PA, USA, 1983; pp. 72–82. [Google Scholar]
- von Post, L. Das genetische System der organogenen Bildung Schwedend. In Quatrieme Commission, Commission pour la Nomenclature et la Classifications des Sols; IV Commission No. 2; Comite Internationale de Pedologie: Rome, Italy, 1924; pp. 287–304. [Google Scholar]
- Buol, S.W.; Hole, F.D.; McCracken, R.J.; Southard, R.J. Soil Genesis and Classification, 4th ed.; Iowa State University Press: Ames, IA, USA, 1997. [Google Scholar]
- Malterer, T. Emeritus University of Minnesota Duluth, Personal communication. 2014. [Google Scholar]
- United States Department of Agriculture, Natural Resources Conservation Service. Field Indicators of Hydric Soils in the United States; Vasilas, L.M., Hurt, G.W., Noble, C.V., Eds.; Version 7.0.; USDA, NRS, in Cooperation with the National Technical Committee for Hydric Soils: Washington, DC, USA, 2010.
- Smith, R.; Michalyna, W.; Eilers, R.; Fraser, W.; Veldhuis, H.; St. Jacques, E.; Swidinsky, D.; Mills, G.; Hopkins, L.; Podolsky, G.; et al. Manual for Describing Soils in the Field—Revised; Manitoba Land Resource Unit, Agriculture and Agri-Food Canada and Soil Resource Section, Manitoba Agriculture; Argiculture Canada: MB, Canada, 2007. Available online: https://www.gov.mb.ca/agriculture/soil/soil-survey/pubs/manual_for_describing_soils_in_the_field.pdf (accessed on 26 October 2019).
- Verry, E.S.; Boelter, D.H.; Paivanen, J.; Nichols, D.S.; Malterer, T.; Gafni, A. Physical properties of organic soils. In Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest; Kolka, R.K., Sebestyen, S.D., Verry, E.S., Brooks, K.N., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 135–176. [Google Scholar]
- Givelet, N.; Le Roux, G.; Cheburkin, A.; Chen, B.; Frank, J.; Goodsite, M.E.; Kempter, H.; Krachler, M.; Nørnberg, T.; Rausch, N.; et al. Suggested protocol for collecting, handling and preparing peat cores and peat samples for physical, chemical, mineralogical and isotopic analyses. J. Environ. Monit. 2004, 6, 481–492. [Google Scholar] [CrossRef]
- Piotrowska, N.; Blaauw, M.; Mauquoy, D.; Chambers, F.M. Constructing deposition chronologies for peat deposits using radiocarbon dating. Mires Peat 2010, 7, 1–14. [Google Scholar]
- Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Bronk Ramsey, C.; Grootes, P.M.; Guilderson, T.P.; Haflidason, H.; Hajdas, I.; et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Soil Survey Staff. Soil Survey Field and Laboratory Methods Manual; Soil Survey Investigations Report No. 51, Version 2.0.; Burt, R., Soil Survey Staff, Eds.; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Boelter, D.H. Important physical properties of peat materials. In Proceedings, 3rd International Peat Congress, Quebec, Canada, 18–23 August 1968; Department of Energy, Mines and Resources and National Research Council of Canada: Ottawa, ON, Canada, 1968; pp. 150–154. [Google Scholar]
- Yu, Z.; Vitt, D.H.; Campbell, I.D.; Apps, M.J. Understanding Holocene peat accumulation pattern of continental fens in western Canada. Can. J. Bot. 2003, 81, 267–282. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2010.
- Stolt, M.H.; Bakken, J. Inconsistencies in terminology and definitions of organic soil materials. Soil Sci. Soc. Am. J. 2014, 78, 1332–1337. [Google Scholar] [CrossRef]
- Soil Survey Staff. Kellogg Soil Survey Laboratory Methods Manual; Burt, R., Soil Survey Staff, Eds.; Soil Survey Investigations Report No. 42, Version 5.0; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Schaney, M.L.; Kite, S.J.; Schaney, C.R.; Heckman, K.; Coughenour, C. Radiocarbon dating peatland development: Key steps in reconstructing past climate in the central Appalachian Mountains. Quat. Sci. Rev. 2020, 241, 106387. [Google Scholar] [CrossRef]
- Borren, W.; Bleuten, W.; Lapshina, E.D. Holocene peat and carbon accumulation rates in the southern taiga of western Siberia. Quat. Res. 2004, 61, 42–51. [Google Scholar] [CrossRef]
- Booth, R.K. Testing the climate sensitivity of peat-based paleoclimate reconstructions in mid-continental North America. Quat. Sci. Rev. 2010, 29, 720–731. [Google Scholar] [CrossRef]
- Zaretskaya, N.E.; Panova, N.K.; Antipina, T.G.; Zhilin, M.G.; Uspenskaya, O.N.; Savchenko, S.N. Geochronology, stratigraphy, and evolution of Middle Uralian peatlands during the Holocene (exemplified by the Shigir and Gorbunovo peat bogs). Stratigr. Geol. Correl. 2013, 22, 632–654. [Google Scholar] [CrossRef]
- Borgmark, A.; Schoning, K. A comparative study of peat proxies from two eastern central Swedish bogs and their relation to meteorological data. J. Quat. Sci. 2006, 21, 109–114. [Google Scholar] [CrossRef]
- Tipping, R. Holocene evolution of a lowland Scottish landscape: Kirkpatrick Fleming. Part I, peat- and pollen-stratigraphic evidence for raised moss development and climatic change. Holocene 1995, 5, 69–81. [Google Scholar] [CrossRef]
- Beget, J.E. Radiocarbon-dated evidence of worldwide early Holocene climate change. Geology 1983, 11, 389. [Google Scholar] [CrossRef]
- Driese, S.G.; Li, Z.; Horn, S.P. Late Pleistocene and Holocene climate and geomorphic histories as interpreted from a 23,000 14C yr B.P. paleosol and floodplain soils, southeastern West Virginia, USA. Quat. Res. 2005, 63, 136–149. [Google Scholar] [CrossRef]
- Fairbridge, R.W. Hypsithermal. In Beaches and Coastal Geology; Encyclopedia of Earth Science; Springer: Boston, MA, USA, 1982. [Google Scholar]
- Mullins, H.T.; Patterson, W.P.; Teece, M.A.; Burnett, A.W. Holocene climate and environmental change in central New York. J. Paleolimnol. 2011, 45, 243–256. [Google Scholar] [CrossRef]
- Springer, G.S.; Rowe, H.D.; Hardt, B.; Cocina, F.G.; Edwards, R.L.; Cheng, H. Climate driven changes in river channel morphology and base level during the Holocene and late Pleistocene of southeastern West Virginia. J. Cave Karst Stud. 2009, 71, 121–129. [Google Scholar]
- Wanner, H.; Mercolli, L.; Grosjean, M.; Ritz, S.P. Holocene climate variability and change; a data-based review. J. Geol. Soc. 2015, 172, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Barber, D.C.; Dyke, A.; Hillaire-Marcel, C.; Jennings, A.E.; Andrews, J.T.; Kerwin, M.W.; Bilodeau, G.; McNeely, R.; Southon, J.; Morehead, M.D.; et al. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 1999, 400, 344–348. [Google Scholar] [CrossRef]
- Clarke, G.; Leverington, D.; Teller, J.; Dyke, A. Superlakes, megafloods, and abrupt climate change. Science 2003, 301, 922–923. [Google Scholar] [CrossRef] [PubMed]
- Newby, P.E.; Shuman, B.N.; Donnelly, J.P.; Karnauskas, K.B.; Marsicek, J. Centennial-to-millennial hydrologic trends and variability along the North Atlantic Coast, USA, during the Holocene. Geophys. Res. Lett. 2014, 41, 4300–4307. [Google Scholar] [CrossRef] [Green Version]
- Ballard, J.P.; Horn, S.P.; Li, Z. A 23,000-year microscopic charcoal record from Anderson Pond, Tennessee, USA. Palynology 2016, 41, 216–229. [Google Scholar] [CrossRef]
- Driese, S.G.; Li, Z.H.; McKay, L.D. Evidence for multiple, episodic, mid-Holocene Hypsithermal recorded in two soil profiles along an alluvial floodplain catena, southeastern Tennessee, USA. Quat. Res. 2008, 69, 276–291. [Google Scholar] [CrossRef]
- Tanner, B.R.; Lane, C.S.; Martin, E.M.; Young, R.; Collins, B. Sedimentary proxy evidence of a mid-Holocene Hypsithermal event in the location of a current warming hole, North Carolina, USA. Quat. Res. 2015, 83, 315–323. [Google Scholar] [CrossRef]
- Watts, W.A. Late Quaternary vegetation of central Appalachia and the New Jersey coastal plain. Ecol. Monogr. 1979, 49, 427–469. [Google Scholar] [CrossRef]
- Booth, R.K.; Brewer, S.; Blaauw, M.; Minckley, T.A.; Jackson, S.T. Decomposing the mid-Holocene Tsuga decline in eastern North America. Ecology 2012, 93, 1841–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammann, B.; van Leeuwen, J.F.N.; van der Knaap, P.; Colombaroli, D.; Tinner, W.; Wright, H.E.; Stefanova, V. The role of peat decomposition in patterned mires: A case study from the central Swiss Alps. Preslia 2013, 85, 317–332. [Google Scholar]
- Holden, J. Peatland hydrology and carbon release: Why small-scale process matters. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2005, 363, 2891–2913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belyea, L.R.; Warner, B.G. Temporal scale and the accumulation of peat in a Sphagnum bog. Can. J. Bot. 1996, 74, 366–377. [Google Scholar] [CrossRef]
Laboratory ID | Sample No. | Core No. | Depth (cm) | Standard Radiocarbon Age | intCal13 Calibrated Dates 95% Confidence Interval | Median Cal yr BP | Accumulation Rate mm/yr | ||
---|---|---|---|---|---|---|---|---|---|
14C Age | ± | From | To | ||||||
CAMS-171742 | 25 | 1.82 | 128–130 | 12,810 | 40 | 15,449 | 15,109 | 15,258 | |
CAMS-172756 | 32 | 1.86 | 2–4 | 1225 | 30 | 1260 | 1065 | 1153 | 0.05 |
CAMS-172757 | 33 | 1.86 | 40–42 | 7880 | 35 | 8953 | 8587 | 8675 | 0.08 |
CAMS-172762 | 38 | 1.86 | 59–61 | 9600 | 30 | 11,128 | 10,774 | 10,928 | 0.18 |
CAMS-172763 | 39 | 1.86 | 86–88 | 10,475 | 35 | 12,560 | 12,147 | 12,451 | 0.82+ |
CAMS-172764 | 40 | 1.86 | 100–102 | 10,635 | 30 | 12,690 | 12,559 | 12,621 | 0.08+ |
CAMS-171738 | 21 | 1.86 | 127–129 | 13,155 | 40 | 1,6002 | 15,637 | 15,807 | |
CAMS-171739 | 22 | 2.05 | 119–121 | 15,045 | 40 | 18,435 | 18,099 | 18,284 | |
CAMS-172760 | 36 | 2.09 | 15–17 | 3550 | 35 | 3960 | 3720 | 3844 | 0.05 |
CAMS-172761 | 37 | 2.09 | 40–42 | 8035 | 35 | 9021 | 8775 | 8909 | 0.04 |
CAMS-172758 | 34 | 2.09 | 65–67 | 12,455 | 45 | 14,961 | 14,251 | 14,598 | 0.16 |
CAMS-172759 | 35 | 2.09 | 80–82 | 12,985 | 40 | 15,732 | 15,315 | 15,528 | 0.33 |
CAMS-171737 | 20 | 2.09 | 92–94 | 13,225 | 40 | 16,069 | 15,730 | 15,896 | |
CAMS-172750 | 26 | 3.13 | 11–13 | 1925 | 30 | 1947 | 1817 | 1873 | 0.11 |
CAMS-170482 | 10 | 3.13 | 27–29 | 3155 | 30 | 3450 | 3269 | 3382 | 0.45 |
CAMS-172751 | 27 | 3.13 | 50–52 | 3590 | 30 | 3977 | 3833 | 3894 | 0.07 |
CAMS-170483 | 11 | 3.13 | 64–66 | 5180 | 30 | 5991 | 5905 | 5936 | 0.02 |
CAMS-172752 | 28 | 3.13 | 75–77 | 10,095 | 40 | 11,954 | 11,404 | 11,687 | 0.06 |
CAMS-172753 | 29 | 3.13 | 83–85 | 11,085 | 35 | 13,063 | 12,824 | 12,960 | 0.20 |
CAMS-170484 | 12 | 3.13 | 94–96 | 11,680 | 30 | 13,570 | 13,445 | 13,510 | 0.08 |
CAMS-172754 | 30 | 3.13 | 120–122 | 13,815 | 40 | 16,946 | 16,488 | 16,715 | 0.23 |
CAMS-170485 | 13 | 3.13 | 165–167 | 15,375 | 35 | 18,759 | 18,544 | 18,653 | |
CAMS-171740 | 23 | 3.14 | 121–123 | 13,870 | 40 | 17,009 | 16,573 | 16,802 | |
CAMS-170478 | 6 | 4.02 | 7–9 | 420 | 35 | 530 | 326 | 486 | 0.06 |
CAMS-170479 | 7 | 4.02 | 17–20 | 2130 | 30 | 2299 | 2001 | 2111 | 0.44 |
CAMS-170480 | 8 | 4.02 | 76–79 | 3240 | 30 | 3560 | 3388 | 3460 | 0.35 |
CAMS-170481 | 9 | 4.02 | 117–120 | 4095 | 35 | 4814 | 4446 | 4607 | |
CAMS-172755 | 31 | 4.09 | 151–152 | 4380 | 40 | 5212 | 4852 | 4942 | |
CAMS-172770 | 46 | 4.19 | 30–32 | 2490 | 30 | 2730 | 2460 | 2584 | 0.61 |
CAMS-172771 | 47 | 4.19 | 60–62 | 2925 | 30 | 3164 | 2971 | 3072 | 0.52 |
CAMS-172772 | 48 | 4.19 | 80–82 | 3235 | 30 | 3558 | 3385 | 3453 | 0.58 |
CAMS-172773 | 49 | 4.19 | 120–122 | 3775 | 35 | 4281 | 3992 | 4146 | 0.05 |
CAMS-172774 | 50 | 4.19 | 165–167 | 11,235 | 35 | 13,164 | 13,041 | 13,097 | 0.21 |
CAMS-171741 | 24 | 4.19 | 211–213 | 12,850 | 40 | 15,545 | 15,160 | 15,315 | |
CAMS-170473 | 1 | 5.12 | 16–20 | 2080 | 30 | 2140 | 1952 | 2050 | 0.64 |
CAMS-170474 | 2 | 5.12 | 51–53 | 2495 | 30 | 2732 | 2466 | 2585 | 1.34 |
CAMS-170475 | 3 | 5.12 | 82–85 | 2725 | 30 | 2873 | 2761 | 2817 | 0.04 |
CAMS-170476 | 4 | 5.12 | 114–116 | 9010 | 30 | 10,235 | 10,170 | 10,204 | 0.15 |
CAMS-170477 | 5 | 5.12 | 197–199 | 13,105 | 35 | 15,940 | 15,540 | 15,733 | |
CAMS-171732 | 15 | 5.17 | 18–20 | 2070 | 30 | 2123 | 1950 | 2039 | 0.68 |
CAMS-171733 | 16 | 5.17 | 70–72 | 2705 | 30 | 2857 | 2756 | 2804 | 0.39 |
CAMS-172765 | 41 | 5.17 | 85–87 | 3800 | 30 | 4288 | 4088 | 4187 | |
CAMS-174232 | 41* | 5.17 | 82–84 | 2970 | 30 | 3230 | 3007 | 3135 | 0.37 |
CAMS-172766 | 42 | 5.17 | 120–122 | 2930 | 30 | 3169 | 2974 | 3080 | |
CAMS-174233 | 42* | 5.17 | 122–124 | 3820 | 40 | 4406 | 4091 | 4217 | 0.07 |
CAMS-172767 | 43 | 5.17 | 130–132 | 4580 | 30 | 5447 | 5066 | 5302 | 0.63+ |
CAMS-172768 | 44 | 5.17 | 140–142 | 4720 | 45 | 5584 | 5322 | 5460 | 0.04+ |
CAMS-171736 | 19 | 5.17 | 161–163 | 9160 | 45 | 10,483 | 10,231 | 10,323 | 0.12 |
CAMS-172769 | 45 | 5.17 | 173–175 | 9930 | 30 | 11,590 | 11,241 | 11,312 | 0.12 |
CAMS-171735 | 18 | 5.17 | 196–198 | 11,360 | 35 | 13,290 | 13,115 | 13,203 | 0.28 |
CAMS-171734 | 17 | 5.17 | 225–227 | 12,310 | 35 | 14,531 | 14,075 | 14,237 | 0.55 |
CAMS-171731 | 14 | 5.17 | 288–290 | 12,890 | 40 | 15,598 | 15,210 | 15,382 |
Soil Profile Type in the Catotelm | Peatland 1 | Peatland 2 | Peatland 3 | Peatland 4 | Peatland 5 | Type Totals | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cores | Data | Cores | Data | Cores | Data | Cores | Data | Cores | Data | |||
Type A (H) | 2 | 0 | 4 | 3 | 1 | 10 | ||||||
with lab data and C14 dates | 0 | 0 | 0 | 0 | 0 | |||||||
with C14 dates | 0 | 0 | 0 | 2 | 0 | |||||||
with lab data | 0 | 0 | 0 | 0 | 0 | |||||||
only field descriptions | 2 | 0 | 4 | 1 | 1 | |||||||
Type B (SH) | 17 | 4 | 2 | 0 | 1 | 24 | ||||||
with lab data and C14 dates | 2 | 2 | 0 | 0 | 0 | |||||||
with C14 dates | 0 | 1 | 1 | 0 | 0 | |||||||
with lab data | 2 | 1 | 0 | 0 | 0 | |||||||
only field descriptions | 13 | 1 | 1 | 0 | 1 | |||||||
Type C (HSH) | 0 | 2 | 6 | 6 | 13 | 27 | ||||||
with lab data and C14 dates | 0 | 0 | 1 | 1 | 1 | |||||||
with C14 dates | 0 | 0 | 0 | 0 | 1 | |||||||
with lab data | 0 | 2 | 0 | 0 | 4 | |||||||
only field descriptions | 0 | 0 | 5 | 5 | 7 | |||||||
Type D (S) | 3 | 3 | 3 | 2 | 0 | 11 | ||||||
with lab data and C14 dates | 0 | 0 | 0 | 0 | 0 | |||||||
with C14 dates | 0 | 0 | 0 | 0 | 0 | |||||||
with lab data | 0 | 0 | 0 | 0 | 0 | |||||||
only field descriptions | 3 | 3 | 3 | 2 | 0 | |||||||
Type E (HS) | 3 | 0 | 4 | 8 | 1 | 16 | ||||||
with lab data and C14 dates | 0 | 0 | 0 | 0 | 0 | |||||||
with C14 dates | 0 | 0 | 0 | 0 | 0 | |||||||
with lab data | 0 | 0 | 3 | 3 | 1 | |||||||
only field descriptions | 3 | 0 | 1 | 5 | 0 | |||||||
Totals for each peatland | 25 | 9 | 19 | 19 | 16 | 88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schaney, M.L.; Kite, J.S.; Schaney, C.R.; Thompson, J.A. Evidence of Mid-Holocene (Northgrippian Age) Dry Climate Recorded in Organic Soil Profiles in the Central Appalachian Mountains of the Eastern United States. Geosciences 2021, 11, 477. https://doi.org/10.3390/geosciences11110477
Schaney ML, Kite JS, Schaney CR, Thompson JA. Evidence of Mid-Holocene (Northgrippian Age) Dry Climate Recorded in Organic Soil Profiles in the Central Appalachian Mountains of the Eastern United States. Geosciences. 2021; 11(11):477. https://doi.org/10.3390/geosciences11110477
Chicago/Turabian StyleSchaney, Mitzy L., James S. Kite, Christopher R. Schaney, and James A. Thompson. 2021. "Evidence of Mid-Holocene (Northgrippian Age) Dry Climate Recorded in Organic Soil Profiles in the Central Appalachian Mountains of the Eastern United States" Geosciences 11, no. 11: 477. https://doi.org/10.3390/geosciences11110477
APA StyleSchaney, M. L., Kite, J. S., Schaney, C. R., & Thompson, J. A. (2021). Evidence of Mid-Holocene (Northgrippian Age) Dry Climate Recorded in Organic Soil Profiles in the Central Appalachian Mountains of the Eastern United States. Geosciences, 11(11), 477. https://doi.org/10.3390/geosciences11110477