Fracture Kinematics and Holocene Stress Field at the Krafla Rift, Northern Iceland
Abstract
:1. Introduction
2. Geological and Tectonic Background
3. Methods and Materials
3.1. Remote Sensing
3.2. Field Data Collection
3.3. Data Analysis
4. Results
4.1. Fracture Geometry
4.2. Fracture Density and Spacing
4.3. Fracture Kinematics and Dilation
5. Discussion
5.1. Rift Architecture
5.2. Rift Extension Rate
5.3. Rift Kinematics and Spreading Direction
5.4. General Considerations
6. Conclusions
- (1)
- Regarding structure geometry, normal faults are longer than extension fractures. This suggests that, along the rift, extension fractures might represent an earlier stage of evolution before developing into faults. Normal faults are prevalent in the southern part of the rift, whereas extension fractures dominate in the northernmost sector. This structure distribution has also been observed at the adjacent ThFS, suggesting a northward propagation of both rifts; in fact, normal faults show a clear decrease in length and frequency going northward. Structures with N-S and NNE-SSW orientations are longer: being perpendicular to the regional spreading direction (N106° E), their development is facilitated by regional tectonics, more so than for those with different orientations.
- (2)
- Eruptive fissures are present only within a distance of 20 km north of the Krafla volcano, and 30 km south of it. This can be interpreted as a consequence of the lateral shallow propagation of dykes from the central volcano, which tend to deepen with distance, causing surface deformation represented mainly by dry extension fractures.
- (3)
- The extension fractures peak observed at transect 34, characterized by a decrease in the number of normal faults, is situated where the KFS intersects with the possible Húsavík-Flatey Fault prolongation. Moreover, we observed a greater range in the azimuth values for both the extension fractures and normal faults, always at the intersection with the HFF propagation.
- (4)
- The greatest total dilation value of 27.5 m was reached in the central area, a few kilometres north of the caldera. In the northernmost part of the rift and just south of the caldera, our data show that the total dilation value is about 14 m. Assuming the age of 11.5 ± 0.5 ka BP for the post-LGM lava units, we obtain an extension rate of 2.4 ± 0.7 mm/yr in the central area, and 1.2 ± 0.7 mm/yr in the northern part.
- (5)
- The collected data indicate an overall average spreading direction of N99.5° E. Considering the three different surveyed areas, from north to south, the average values are N103.2° E +/−15.7°, N98.7° E +/−14.7°and N107.7° E +/−12.4°, respectively. The average values considering the whole area and the central one are almost similar, and are both slightly lower than the spreading range values given in the literature, i.e., N106° E and N112° E for the whole NVZ, and N109° E and N115° E for the northern part of the NVZ. Our spreading directions in the northern and southern area are closer to the values that take into account geological data covering a wider time span, whereas they are instead slightly rotated anti-clockwise with respect to the spreading directions based only on GPS data.
- (6)
- Finally, we have observed the presence of strike-slip components of motion along the extension fractures: 453 fractures (33%) are characterized by pure extension, 497 fractures (37%) present right-lateral component and 412 (30%) present a left-lateral component. On one side, these components are related to the rotation of fracture strike, and thus to a control by regional tectonics. On the other side, such lateral components can be induced by local perturbations exerted by dyking at shallow depths.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hjartardóttir, Á.R.; Einarsson, P.; Magnusdóttir, S.; Bjornsdóttir, P.; Brandsdóttir, B. Fracture systems of the Northern Volcanic Rift Zone, Iceland: An onshore part of the Mid-Atlantic plate boundary. In Magmatic Rifting and Active Volcanism; Wright, T.J., Ayele, A., Ferguson, D.J., Kidane, T., Vye-Brown, C., Eds.; Geological Society of London: London, UK, 2016; Volume 420, pp. 297–314. [Google Scholar]
- Angelier, J.; Bergerat, F.; Dauteuil, O.; Villemin, T. Effective tension-shear relationships in extensional fissure swarms, axial rift zone of northeastern Iceland. J. Struct. Geol. 1997, 19, 673–685. [Google Scholar] [CrossRef]
- Acocella, V.; Gudmundsson, A.; Funiciello, R. Interaction and linkage of extension fractures and normal faults: Examples from the rift zone of Iceland. J. Struct. Geol. 2000, 22, 1233–1246. [Google Scholar] [CrossRef]
- Bonali, F.L.; Tibaldi, A.; Corti, N.; Fallati, L.; Russo, E. Reconstruction of Late Pleistocene-Holocene Deformation through Massive Data Collection at Krafla Rift (NE Iceland) Owing to Drone-Based Structure-from-Motion Photogrammetry. Appl. Sci. 2020, 10, 6759. [Google Scholar] [CrossRef]
- Tibaldi, A.; Bonali, F.; Einarsson, P.; Hjartardottir, A.R.; Mariotto, F.P. Partitioning of Holocene kinematics and interaction between the Theistareykir Fissure Swarm and the Husavik-Flatey Fault, North Iceland. J. Struct. Geol. 2016, 83, 134–155. [Google Scholar] [CrossRef]
- Tibaldi, A.; Bonali, F.; Mariotto, F.P.; Russo, E.; Tenti, L.R. The development of divergent margins: Insights from the North Volcanic Zone, Iceland. Earth Planet. Sci. Lett. 2019, 509, 1–8. [Google Scholar] [CrossRef]
- Tibaldi, A.; Bonali, F.L.; Mariotto, F.P.; Corti, N.; Russo, E.; Einarsson, P.; Hjartardóttir, Á.R. Rifting Kinematics Produced by Magmatic and Tectonic Stresses in the North Volcanic Zone of Iceland. Front. Earth Sci. 2020, 8, 174. [Google Scholar] [CrossRef]
- Tibaldi, A.; Corti, N.; Bonali, F.; Mariotto, F.P.; Russo, E. Along-rift propagation of Pleistocene-Holocene faults from a central volcano. J. Struct. Geol. 2020, 141, 104201. [Google Scholar] [CrossRef]
- Bonali, F.; Tibaldi, A.; Mariotto, F.P.; Saviano, D.; Meloni, A.; Sajovitz, P. Geometry, oblique kinematics and extensional strain variation along a diverging plate boundary: The example of the northern Theistareykir Fissure Swarm, NE Iceland. Tectonophysics 2019, 756, 57–72. [Google Scholar] [CrossRef]
- Bonali, F.; Tibaldi, A.; Marchese, F.; Fallati, L.; Russo, E.; Corselli, C.; Savini, A. UAV-based surveying in volcano-tectonics: An example from the Iceland rift. J. Struct. Geol. 2019, 121, 46–64. [Google Scholar] [CrossRef]
- Einarsson, P.; Saemundsson, K. Earthquake epicentres 1982–1985 and volcanic systems in Iceland (map). In Í Hlutarins Eðli, Festschrift for Thorbjörn Sigurgeirsson; Sigfússon, T.I., Ed.; Menningarsjóður: Reykjavík, Iceland, 1987. [Google Scholar]
- Magnúsdóttir, S.; Brandsdóttir, B. Tectonics of the Þeistareykir fissure swarm. Jökull 2011, 61, 65–79. [Google Scholar]
- Hjartardóttir, Á.R.; Einarsson, P.; Bramham, E.; Wright, T.J. The Krafla fissure swarm, Iceland, and its formation by rifting events. Bull. Volcanol. 2012, 74, 2139–2153. [Google Scholar] [CrossRef]
- Buck, W.R.; Einarsson, P.; Brandsdóttir, B. Tectonic stress and magma chamber size as controls on dike propagation: Constraints from the 1975–1984 Krafla rifting episode. J. Geophys. Res. Solid Earth 2006, 111, B12. [Google Scholar] [CrossRef]
- Einarsson, P.; Brandsdóttir, B. Seismological evidence for lateral magma intrusion during the July 1978 deflation of the Krafla volcano in NE-Iceland. J. Geophys. 1980, 47, 160–165. [Google Scholar]
- Lyakhovsky, V.; Segev, A.; Schattner, U.; Weinberger, R. Deformation and seismicity associated with continental rift zones propagating toward continental margins. Geochem. Geophys. Geosystems 2012, 13, 01012. [Google Scholar] [CrossRef]
- Keir, D.; Ebinger, C.J.; Stuart, G.W.; Daly, E.; Ayele, A. Strain accommodation by magmatism and faulting as rifting proceeds to breakup: Seismicity of the northern Ethiopian rift. J. Geophys. Res. Space Phys. 2006, 111, 05314. [Google Scholar] [CrossRef]
- Drouin, V.; Sigmundsson, F.; Ófeigsson, B.G.; Hreinsdóttir, S.; Sturkell, E.; Einarsson, P. Deformation in the Northern Volcanic Zone of Iceland 2008–2014: An interplay of tectonic, magmatic, and glacial isostatic deformation. J. Geophys. Res. Solid Earth 2017, 122, 3158–3178. [Google Scholar] [CrossRef]
- Sigmundsson, F.; Einarsson, P.; Hjartardóttir, Á.R.; Drouin, V.; Jónsdóttir, K.; Árnadóttir, T.; Geirsson, H.; Hreinsdóttir, S.; Li, S.; Ófeigsson, B.G. Geodynamics of Iceland and the signatures of plate spreading. J. Volcanol. Geotherm. Res. 2020, 391, 106436. [Google Scholar] [CrossRef]
- Gudmundsson, A. Dynamics of Volcanic Systems in Iceland: Example of Tectonism and Volcanism at Juxtaposed Hot Spot and Mid-Ocean Ridge Systems. Annu. Rev. Earth Planet. Sci. 2000, 28, 107–140. [Google Scholar] [CrossRef]
- Einarsson, P. Plate boundaries, rifts and transforms in Iceland. Jökull 2008, 58, 35–58. [Google Scholar]
- Mjelde, R.; Digranes, P.; Van Schaack, M.; Shimamura, H.; Kodaira, S.; Naess, O.; Sørenes, N.; Vågnes, E.; Shiobara, H. Crustal structure of the outer Vøring Plateau, offshore Norway, from ocean bottom seismic and gravity data. J. Geophys. Res. Space Phys. 2001, 106, 6769–6791. [Google Scholar] [CrossRef]
- Jacoby, W.; Gudmundsson, M.T. Hotspot Iceland: An introduction. J. Geodyn. 2007, 43, 1–5. [Google Scholar] [CrossRef]
- Jakobsdóttir, S.S.; Roberts, M.J.; Guðmundsson, G.B.; Geirsson, H.; Slunga, R. Earthquake swarms at Upptyppingar, North-east Iceland: A sign of magma intrusion? Stud. Geophys. Geod. 2008, 52, 513–528. [Google Scholar] [CrossRef]
- Saemundsson, K. Evolution of the axial rifting zone in northern Iceland and the Tjörnes fracture zone. Geol. Soc. Am. Bull. 1974, 85, 495–504. [Google Scholar] [CrossRef]
- Gudmundsson, A. Infrastructure and evolution of ocean-ridge discontinuities in Iceland. J. Geodyn. 2007, 43, 6–29. [Google Scholar] [CrossRef]
- Bergerat, F.; Angelier, J. Immature and mature transform zones near a hot spot: The South Iceland Seismic Zone and the Tjörnes Fracture Zone (Iceland). Tectonophysics 2008, 447, 142–154. [Google Scholar] [CrossRef]
- Stefánsson, R.; Gudmundsson, G.B.; Halldorsson, P. Tjörnes fracture zone. New and old seismic evidences for the link between the North Iceland rift zone and the Mid-Atlantic ridge. Tectonophysics 2008, 447, 117–126. [Google Scholar] [CrossRef]
- Wolfe, C.J.; Bjarnason, I.T.; Vandecar, J.C.; Solomon, S.C. Seismic structure of the Iceland mantle plume. Nat. Cell Biol. 1997, 385, 245–247. [Google Scholar] [CrossRef]
- Hjartardóttir, Á.R.; Einarsson, P.; Björgvinsdóttir, S.G. Fissure swarms and fracture systems within the Western Volcanic Zone, Iceland—Effects of spreading rates. J. Struct. Geol. 2016, 91, 39–53. [Google Scholar] [CrossRef]
- Saemundsson, K.; Hjartarson, A.; Kaldal, I.; Sigurgeirsson, M.A.; Kristinsson, S.G.; Vikingsson, S. Geological map of the Northern Volcanic Zone, Iceland. Northern Part 1: 100.000; Iceland GeoSurvey and Landsvirkjun: Reykjavik, Iceland, 2012. [Google Scholar]
- Mattsson, H.B.; Höskuldsson, Á. Contemporaneous phreatomagmatic and effusive activity along the Hverfjall eruptive fissure, north Iceland: Eruption chronology and resulting deposits. J. Volcanol. Geotherm. Res. 2011, 201, 241–252. [Google Scholar] [CrossRef]
- Sæmundsson, K. Geology of the Krafla system. In The Natural History of Lake Myvatn; Gardarson, A., Einarsson, Á., Eds.; Icelandic Natural History Society: Reykjavik, Iceland, 1991; pp. 24–95. [Google Scholar]
- Rooyakkers, S.M.; Stix, J.; Berlo, K.; Barker, S.J. Emplacement of unusual rhyolitic to basaltic ignimbrites during collapse of a basalt-dominated caldera: The Halarauður eruption, Krafla (Iceland). GSA Bull. 2020, 132, 1881–1902. [Google Scholar] [CrossRef]
- Jónasson, K. Rhyolite volcanism in the Krafla central volcano, north-east Iceland. Bull. Volcanol. 1994, 56, 516–528. [Google Scholar] [CrossRef]
- Einarsson, P. S-wave shadows in the Krafla Caldera in NE-Iceland, evidence for a magma chamber in the crust. Bull. Volcanol. 1978, 41, 187–195. [Google Scholar] [CrossRef]
- Tryggvason, E. Multiple magma reservoirs in a rift zone volcano: Ground deformation and magma transport during the September 1984 eruption of Krafla, Iceland. J. Volcanol. Geotherm. Res. 1986, 28, 1–44. [Google Scholar] [CrossRef]
- Grönvold, K.; Halldórsson, S.A.; Sigurðsson, G.; Sverrisdóttir, G.; Óskarsson, N. Isotopic systematics of magma movement in the Krafla Central Volcano, North Iceland. In Proceedings of the Goldschmidt Conference, Vancouver, Canada, 13–18 July 2008; p. A331. [Google Scholar]
- Björnsson, A.; Sæmundsson, K.; Einarsson, P.; Tryggvason, E.; Grönvold, K. Current rifting episode in north Iceland. Nature 1977, 266, 318–323. [Google Scholar] [CrossRef]
- Sigmundsson, F.; Hooper, A.; Hreinsdóttir, S.; Vogfjörd, K.S.; Ófeigsson, B.G.; Heimisson, E.R.; Dumont, S.; Parks, M.; Spaans, K.; Gudmundsson, G.B.; et al. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 2015, 517, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjartardóttir, Á.R.; Einarsson, P.; Gudmundsson, M.T.; Högnadóttir, T. Fracture movements and graben subsidence during the 2014 Bárðarbunga dike intrusion in Iceland. J. Volcanol. Geotherm. Res. 2016, 310, 242–252. [Google Scholar] [CrossRef]
- Einarsson, P. Earthquakes and present-day tectonism in Iceland. Tectonophysics 1991, 189, 261–279. [Google Scholar] [CrossRef]
- Björnsson, A.; Johnsen, G.; Sigurdsson, S.; Thorbergsson, G.; Tryggvason, E. Rifting of the plate boundary in north Iceland 1975–1978. J. Geophys. Res. Space Phys. 1979, 84, 3029–3038. [Google Scholar] [CrossRef]
- Tryggvason, E. Widening of the Krafla fissure swarm during the 1975–1981 volcano-tectonic episode. Bull. Volcanol. 1984, 47, 47–69. [Google Scholar] [CrossRef]
- Hofton, M.A.; Foulger, G.R. Postrifting anelastic deformation around the spreading plate boundary, north Iceland: 1. Modeling of the 1987-1992 deformation field using a viscoelastic Earth structure. J. Geophys. Res. Space Phys. 1996, 101, 25403–25421. [Google Scholar] [CrossRef]
- Hollingsworth, J.; Leprince, S.; Ayoub, F.; Avouac, J.-P. New constraints on dike injection and fault slip during the 1975-1984 Krafla rift crisis, NE Iceland. J. Geophys. Res. Solid Earth 2013, 118, 3707–3727. [Google Scholar] [CrossRef] [Green Version]
- Einarsson, P. The volcanic unrest at Krafla 1975-89. In Náttúra Mývatns; Garðarsson, A., Einarsson, Á., Eds.; Hið íslenska náttúrufræðifélag: Reykjavík, Iceland, 1991; pp. 96–139. [Google Scholar]
- DeMets, C.; Gordon, R.G.; Argus, D.F.; Stein, S. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 1994, 21, 2191–2194. [Google Scholar] [CrossRef]
- Saemundsson, K. Fissure swarms and central volcanoes of the neovolcanic zones of Iceland in Crustal evolution in northern Britain and adjacent regions. Geol. J. Liverpool 1978, 10, 415–432. [Google Scholar]
- Heki, K.; Foulger, G.R.; Julian, B.R.; Jahn, C.H. Plate dynamics near divergent plate boundaries: Geophysical implications of post-rifting crustal deformation in NE Iceland. J. Geophys. Res. 1993, 98, 14279–14297. [Google Scholar] [CrossRef] [Green Version]
- Sigmundsson, F. Iceland Geodynamics, Crustal Deformation and Divergent Plate Tectonics; Springer Science & Business Media: Chichester, UK, 2006. [Google Scholar]
- Metzger, S.; Jónsson, S.; Geirsson, H. Locking depth and slip-rate of the Húsavík Flatey fault, North Iceland, derived from continuous GPS data 2006-2010. Geophys. J. Int. 2011, 187, 564–576. [Google Scholar] [CrossRef]
- Metzger, S.; Jónsson, S.; Danielsen, G.; Hreinsdóttir, S.; Jouanne, F.; Giardini, D.; Villemin, T. Present kinematics of the Tjörnes Fracture Zone, North Iceland, from campaign and continuous GPS measurements. Geophys. J. Int. 2013, 192, 441–455. [Google Scholar] [CrossRef]
- Bonali, F.L.; Corti, N.; Russo, E.; Marchese, F.; Fallati, L.; Pasquaré Mariotto, F.; Tibaldi, A. Commercial-UAV-based Structure from Motion for geological and geohazard studies. In Building Knowledge for Geohazard Assessment and Management in the Caucasus and Other Orogenic Regions; Bonali, F.L., Tsereteli, N., Pasquarè Mariotto, F., Eds.; NATO SPS Series; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Tibaldi, A.; Bonali, F.; Russo, E.; Fallati, L. Surface deformation and strike-slip faulting controlled by dyking and host rock lithology: A compendium from the Krafla Rift, Iceland. J. Volcanol. Geotherm. Res. 2020, 395, 106835. [Google Scholar] [CrossRef]
- Gudmundsson, A. Rock Fractures in Geological Processes; Amsterdam University Press: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Tibaldi, A.; Bonali, F. Intra-arc and back-arc volcano-tectonics: Magma pathways at Holocene Alaska-Aleutian volcanoes. Earth-Sci. Rev. 2017, 167, 1–26. [Google Scholar] [CrossRef]
- Cladouhos, T.T.; Marrett, R. Are fault growth and linkage models consistent with power-law distributions of fault lengths? J. Struct. Geol. 1996, 18, 281–293. [Google Scholar] [CrossRef]
- Mansfield, C.; Cartwright, J. Fault growth by linkage: Observations and implications from analogue models. J. Struct. Geol. 2001, 23, 745–763. [Google Scholar] [CrossRef]
- Sæmundsson, K. Outline of the geology of Iceland. Jokull 1979, 29, 7–28. [Google Scholar]
- Hjartardóttir, Á.R.; Einarsson, P.; Sigurdsson, H. The fissure swarm of the Askja volcanic system along the divergent plate boundary of N Iceland. Bull. Volcanol. 2009, 71, 961–975. [Google Scholar] [CrossRef]
- Ágústsdóttir, T.; Woods, J.; Greenfield, T.; Green, R.G.; White, R.S.; Winder, T.; Brandsdóttir, B.; Steinthórsson, S.; Soosalu, H. Strike-slip faulting during the 2014 Bárðarbunga-Holuhraun dike intrusion, central Iceland. Geophys. Res. Lett. 2016, 43, 1495–1503. [Google Scholar] [CrossRef] [Green Version]
- Jónasson, K. Magmatic evolution of the Heiðarsporður ridge, NE-Iceland. J. Volcanol. Geotherm. Res. 2005, 147, 109–124. [Google Scholar] [CrossRef]
- Tibaldi, A.; Bonali, F.L.; Mariotto, F.P.; Russo, E. Interplay between inherited rift faults and transcurrent structures: Insights from analogue models and field data from Iceland. Glob. Planet. Chang. 2018, 171, 88–109. [Google Scholar]
- Dauteuil, O.; Angelier, J.; Bergerat, F.; Verrier, S.; Villemin, T. Deformation partitioning inside a fissure swarm of the northern Icelandic rift. J. Struct. Geol. 2001, 23, 1359–1372. [Google Scholar] [CrossRef]
- Paquet, F.; Dauteuil, O.; Hallot, E.; Moreau, F. Tectonics and magma dynamics coupling in a dyke swarm of Iceland. J. Struct. Geol. 2007, 29, 1477–1493. [Google Scholar] [CrossRef]
- Perlt, J.; Heinert, M.; Niemeier, W. The continental margin in Iceland—A snapshot derived from combined GPS networks. Tectonophysics 2008, 447, 155–166. [Google Scholar] [CrossRef]
- Ruch, J.; Wang, T.; Xu, W.; Hensch, M.; Jónsson, S. Oblique rift opening revealed by reoccurring magma injection in central Iceland. Nat. Commun. 2016, 7, 12352. [Google Scholar] [CrossRef] [Green Version]
- Wright, T.J.; Sigmundsson, F.; Pagli, C.; Belachew, M.; Hamling, I.J.; Brandsdóttir, B.; Keir, D.; Pedersen, R.; Ayele, A.; Ebinger, C.; et al. Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat. Geosci. 2012, 5, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Manighetti, I.; King, G.C.P.; Gaudemer, Y.; Scholz, C.H.; Doubre, C. Slip accumulation and lateral propagation of active normal faults in Afar. J. Geophys. Res. Space Phys. 2001, 106, 13667–13696. [Google Scholar] [CrossRef]
- Dumont, S.; Klinger, Y.; Socquet, A.; Doubre, C.; Jacques, E. Magma influence on propagation of normal faults: Evidence from cumulative slip profiles along Dabbahu-Manda-Hararo rift segment (Afar, Ethiopia). J. Struct. Geol. 2017, 95, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Russo, E.; Tibaldi, A.; Waite, G.; Bonali, F.; Massin, F.; Farrell, J. Unraveling the complex deformation pattern at Yellowstone plateau through seismicity and fracture analysis. Tectonophysics 2020, 778, 228352. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corti, N.; Bonali, F.L.; Pasquaré Mariotto, F.; Tibaldi, A.; Russo, E.; Hjartardóttir, Á.R.; Einarsson, P.; Rigoni, V.; Bressan, S. Fracture Kinematics and Holocene Stress Field at the Krafla Rift, Northern Iceland. Geosciences 2021, 11, 101. https://doi.org/10.3390/geosciences11020101
Corti N, Bonali FL, Pasquaré Mariotto F, Tibaldi A, Russo E, Hjartardóttir ÁR, Einarsson P, Rigoni V, Bressan S. Fracture Kinematics and Holocene Stress Field at the Krafla Rift, Northern Iceland. Geosciences. 2021; 11(2):101. https://doi.org/10.3390/geosciences11020101
Chicago/Turabian StyleCorti, Noemi, Fabio L. Bonali, Federico Pasquaré Mariotto, Alessandro Tibaldi, Elena Russo, Ásta Rut Hjartardóttir, Páll Einarsson, Valentina Rigoni, and Sofia Bressan. 2021. "Fracture Kinematics and Holocene Stress Field at the Krafla Rift, Northern Iceland" Geosciences 11, no. 2: 101. https://doi.org/10.3390/geosciences11020101
APA StyleCorti, N., Bonali, F. L., Pasquaré Mariotto, F., Tibaldi, A., Russo, E., Hjartardóttir, Á. R., Einarsson, P., Rigoni, V., & Bressan, S. (2021). Fracture Kinematics and Holocene Stress Field at the Krafla Rift, Northern Iceland. Geosciences, 11(2), 101. https://doi.org/10.3390/geosciences11020101