Gold in Mineralized Volcanic Systems from the Lesser Khingan Range (Russian Far East): Textural Types, Composition and Possible Origins
Abstract
:1. Introduction
2. Tectonic Background
3. Materials and Methods
4. Geology, Petrology and Geochemistry
5. Gold and Gold-Bearing Alloys in Ores and Igneous Rocks
5.1. Gold in Explosive Breccia and Fe-Oxide Ore of the Poperechnoye Deposit
5.2. Gold in Basaltic Intrusion from the Poperechnoye Deposit
5.3. Gold in Carbonatite-Like Rocks of the Poperechnoye Deposit
5.4. Gold in Ores and Pyroclastic Rocks from the Kostenga Deposit
5.5. Gold in Pyroclastic Rocks from the Kaylan Deposit
5.6. Some Experimental Considerations
6. Discussion
6.1. Origin of Cu-Ag-Au Spherules
6.2. Origin of Cu-O Micro-Inclusions in Gold-Bearing Spherules
6.3. Origin of Ni-Cu-Zn-Ag-Au Spherules
6.4. Origin of Ti-Cu-Ag-Au Intermetallic Compounds in Association with Baddeleyite
6.5. Origin of Ag-Au Alloys
6.6. Formation of Au-Bearing Compounds in Mineralized Volcanic Systems
6.7. Possible Metallogenic Implications
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anoshin, G.N.; Kepezhinskas, V.V. Petrochemical features related to gold distribution for the Cenozoic volcanic rocks of the Kuril-Kamchatka province. Geochem. Int. 1972, 9, 618–629. [Google Scholar]
- Mitchell, A.H.; Bell, J.D. Island arc evolution and related mineral deposits. J. Geol. 1973, 81, 381–405. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Bonham, H.F., Jr. Volcanic landforms and ore deposits. Econ. Geol. 1984, 79, 1286–1298. [Google Scholar] [CrossRef]
- Berger, B.R.; Bonham, H.F., Jr. Epithermal gold-silver deposits in the western United States: Time-space products of evolving plutonic, volcanic and tectonic environments. J. Geochem. Explor. 1990, 36, 103–142. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal gold deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Audetat, A.; Gunther, D.; Heinrich, C.A. Formation of a magmatic-hydrothermal deposit: Insights with LA-ICP-MS. Science 1998, 279, 2091–2094. [Google Scholar] [PubMed] [Green Version]
- Simon, G.; Kesler, S.E.; Russell, N.; Hall, C.M.; Bell, A.; Pinero, E. Epithermal gold mineralization in an old volcanic arc: The Jacinto Deposit, Camagueey District, Cuba. Econ. Geol. 1999, 94, 487–506. [Google Scholar] [CrossRef]
- Defant, M.J.; Kepezhinskas, P. Evidence suggests slab melting in arc magmas. EOS, Trans. Amer. Geophys. Union 2001, 82, 65–69. [Google Scholar] [CrossRef]
- Mungall, J.E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 2002, 30, 915–918. [Google Scholar] [CrossRef]
- Simon, A.C.; Pettke, T.; Candela, P. Experimental determination of Au solubility in rhyolite melt and magnetite: Constraints on magmatic Au budgets. Amer. Mineral. 2003, 88, 1644–1651. [Google Scholar] [CrossRef]
- Richards, J.P.; Kerrich, R. Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econ. Geol. 2007, 102, 537–576. [Google Scholar] [CrossRef]
- Longo, A.A.; Dilles, J.H.; Grunder, A.L.; Duncan, R. Evolution of calc-alkaline volcanism and associated hydrothermal gold deposits at Yanacocha, Peru. Econ. Geol. 2010, 105, 1191–1241. [Google Scholar] [CrossRef]
- Goff, F.; Stimac, J.A.; Larocque, A.C.L.; Hulen, J.B.; McMutry, G.M.; Adams, A.B.; Roldan, M.A.; Trujillo, N.P.E., Jr.; Counce, D.; Chipera, S.J.; et al. Gold degassing and deposition at Galeras volcano, Colombia. GSA Today 1994, 4, 243–247. [Google Scholar]
- Sisson, T.W. Native gold in a Hawaiian alkaline magma. Econ. Geol. 2003, 98, 643–648. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, J.; Wang, F.; Pirajno, F. Native gold and native copper grains enclosed by olivine phenocrysts in a picrite lava of the Emeishan large igneous province, SW China. Amer. Mineral. 2006, 98, 643–648. [Google Scholar] [CrossRef]
- Zelenski, M.; Kamenetsky, V.S.; Hedenquist, J. Gold recycling and enrichment beneath volcanoes: A case study of Tolbachik, Kamchatka. Earth Planet. Sci. Lett. 2016, 437, 35–46. [Google Scholar] [CrossRef]
- Li, P.; Boudreau, A.E. Vapor transport of silver and gold in basaltic lava flows. Geology 2019, 47, 877–880. [Google Scholar] [CrossRef]
- Fulignati, P.; Sbrana, A. Presence of native gold and tellurium in the active high-sulfidation hydrothermal system of the La Fossa volcano (Vulcano, Italy). J. Volcanol. Geotherm. Res. 1998, 86, 187–198. [Google Scholar] [CrossRef]
- Henley, R.W.; Berger, B.R. Nature’s refineries–metals and metalloids in arc volcanoes. Earth-Sci. Rev. 2013, 125, 146–170. [Google Scholar] [CrossRef]
- Taran, Y.A.; Bernard, A.; Gavilanes, J.C.; Africano, F. Native gold in mineral precipitates from high-temperature volcanic gases of Colima Volcano, Mexico. Appl. Geochem. 2002, 15, 337–346. [Google Scholar]
- Chaplygin, I.; Yudovskaya, M.; Vergasova, L.; Mokhov, A. Native gold from volcanic gases at Tolbachik 1975-76 and 2012-13 Fissure Eruptions, Kamchatka. J. Volcanol. Geotherm. Res. 2015, 307, 200–209. [Google Scholar] [CrossRef]
- Simmons, S.F.; Brown, K.L.; Browne, P.R.L.; Rowland, J.V. Gold and silver resources in Taupo Volcanic Zone geothermal systems. Geothermics 2016, 59, 205–214. [Google Scholar] [CrossRef]
- Shevko, E.P.; Bortnikova, S.B.; Abrosimova, N.A.; Kamenetsky, V.S.; Bortnikova, S.P.; Panin, G.L.; Zelenski, M. Trace elements and minerals in fumarolic sulfur: The case of Ebeko volcano, Kuriles. Geofluids 2018, 2018, 6363. [Google Scholar] [CrossRef] [Green Version]
- Edmonds, M.; Mather, T.A.; Liu, E.J. A distinct metal fingerprint in arc volcanic emissions. Nat. Geosci. 2018, 11, 790–794. [Google Scholar] [CrossRef] [Green Version]
- Zoller, W.H.; Parrington, J.R.; Kotra, P.J.M. Iridium enrichment in airborne particles from Kilauea volcano: January. Science 1983, 222, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Meeker, G.; Chuan, R.L.; Kyle, P.R.; Palais, J. Emission of elemental gold particles from Mount Erebus, Ross Island, Antarctica. Geophys. Res. Lett. 1991, 18, 1405–1408. [Google Scholar] [CrossRef]
- Zelenski, M.; Kamenetsky, V.S.; Taran, Y.; Kovalskii, A.M. Mineralogy and origin of aerosol from an arc basaltic eruption: Case study of Tolbachik Volcano, Kamchatka. Geochem. Geophys. Geosys. 2020, 21. [Google Scholar] [CrossRef]
- Leblanc, M. Co-Ni arsenide deposits, with accessory gold, in ultramafic rocks from Morocco. Can. J. Earth Sci. 1986, 23, 1592–1602. [Google Scholar] [CrossRef]
- Kogiso, T.; Suzuki, T.; Shinotsuka, K.; Uesugi, K.; Takeuchi, A.; Suzuki, Y. Detecting micrometer-scale platinum-group minerals in mantle peridotite with microbeam synchrotron radiation X-ray fluorescence analysis. Geochem. Geophys. Geosys. 2008, 9. [Google Scholar] [CrossRef]
- Tassara, S.; Gonzalez-Jimenez, J.M.; Reich, M.; Schilling, M.E.; Morata, D.; Begg, G.; Saunders, E.; Griffin, W.L.; O’Reilly, S.Y.; Gregoire, M.; et al. Plume-subduction interaction forms large auriferous provinces. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Lorand, J.P.; Keays, R.R.; Bodinier, J.L. Copper- and noble metal enrichment across the asthenosphere-lithosphere mantle diapirs: The Lanzo lherzolite massif. J. Petrol. 1993, 34, 1111–1140. [Google Scholar] [CrossRef]
- Lorand, J.P.; Pattou, L.; Gros, M. Fractionation of platinum-group elements and gold in the upper mantle: A detailed study in Pyrenean orogenic lherozlites. J. Petrol. 1999, 40, 957–981. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Defant, M.J.; Widom, E. Abundance and distribution of PGE and Au in the island-arc mantle: Implications for sub-arc metasomatism. Lithos 2002, 60, 113–128. [Google Scholar] [CrossRef]
- Saunders, J.E.; Pearson, N.J.; Reilly, O.S.Y.; Griffin, W.L. Gold in the mantle: A global assessment of abundance and redistribution processes. Lithos 2018, 322, 376–391. [Google Scholar] [CrossRef]
- Bird, D.K.; Brooks, K.C.; Gannicott, R.A.; Turner, P.A. A gold-bearing horizon in the Skaergaard intrusion, East Greenland. Econ. Geol. 1991, 86, 1083–1092. [Google Scholar] [CrossRef]
- Garuti, G.; Fershtater, G.; Bea, F.; Montero, P.; Pushkarev, E.V.; Zaccarini, F. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals: Preliminary results. Tectonophysics 1997, 267, 181–194. [Google Scholar] [CrossRef]
- Ghose, N.C. Occurrence of native gold and gold-silver alloy in the olivine gabbro of layered cumulate sequence of Naga Hills ophiolite, India. Curr. Sci. 2014, 106, 1125–1130. [Google Scholar]
- Kepezhinskas, P.; Kepezhinskas, N.; Berdnikov, N. Gold, palladium and platinum enrichments in arcs: Role of mantle wedge, arc crust and halogen-rich slab fluids. In Proceedings of the E3S Web Conference, Tomsk, Russia, 20–26 July 2019; Volume 98. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Kepezhinskas, N.P.; Berdnikov, N.V.; Krutikova, V.O. Native metals and intermetallic compounds in subduction-related ultramafic rocks from the Stanovoy mobile belt (Russian Far East): Implications for redox heterogeneity in subduction zones. Ore Geol. Rev. 2020, 127, 3800. [Google Scholar] [CrossRef]
- Brown, K.L. Gold deposition from geothermal discharges in New Zealand. Econ. Geol. 1986, 81, 979–983. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Aoki, M.; Shinohara, H. Flux of volatiles and ore-forming metals from the magmatic-hydrothermal system of Satsuma Iwojima volcano. Geology 1994, 22, 585–588. [Google Scholar] [CrossRef]
- Gammons, C.H.; Jones, W.A.E. Chemical mobility of gold in the porphyry-epithermal environment. Econ. Geol. 1997, 92, 45–59. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Hedenquist, J.W. Linkages between volcanotectonic settings, pre-fluid compositions, and epithermal precious metal deposits. Soc. Econ. Geol. Spec. Publ. 2003, 10, 315–343. [Google Scholar]
- Nadeau, O. Ore metals beneath volcanoes. Nat. Geosci. 2015, 8, 168–170. [Google Scholar] [CrossRef]
- Zentilli, M.; Brooks, R.R.; Helgason, J.; Ryan, D.E.; Zhang, H. The distribution of gold in volcanic rocks of eastern Iceland. Chem. Geol. 1985, 48, 17–28. [Google Scholar] [CrossRef]
- Togashi, S.; Terashima, S. The behavior of gold in unaltered island arc tholeiitic rocks from Izu-Oshima, Fuji, and Osoreyama volcanic areas, Japan. Geochim. Cosmochim. Acta 1997, 61, 543–554. [Google Scholar] [CrossRef]
- Rosa, D.R.N. The incompatible behavior of gold in reduced magmas: A working hypothesis. Comm. Geológicas 2005, 92, 75–78. [Google Scholar]
- Mustard, R.; Ulrich, T.; Kamenetsky, V.S.; Mernagh, T. Gold and metal enrichment in natural granitic melt during fractional crystallization. Geology 2006, 34, 85–88. [Google Scholar] [CrossRef]
- Park, J.W.; Campbell, I.H.; Kim, J.; Moon, J.W. The role of late sulfide saturation in the formation of a Cu- and Au-rich magma: Insights from the platinum group element geochemistry of Niuatahi-Motutahi lavas, Tonga Rear Arc. J. Petrol. 2015, 56, 59–81. [Google Scholar] [CrossRef] [Green Version]
- Mungall, J.E.; Andrews, D.R.A.; Cabri, L.J.; Sylvester, P.J.; Tubrett, M. Partitioning of Cu, Ni, Au and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochim. Cosmochim. Acta 2005, 69, 4349–4360. [Google Scholar] [CrossRef] [Green Version]
- Botcharnikov, R.E.; Linnen, R.L.; Wilke, M.; Holtz, F.; Jugo, P.J.; Berndt, J. High gold concentrations in sulphide-bearing magma under oxidizing conditions. Nat. Geosci. 2011, 4, 112–115. [Google Scholar] [CrossRef]
- Jégo, S.; Pichavant, M. Gold solubility in arc magmas: Experimental determination of the effect of sulfur at 1000 °C and 0.4 GPa. Geochim. Cosmochim. Acta 2012, 84, 560–592. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Feng, L.; Kiseeva, E.S.; Gao, Z.; Guo, H.; Du, Z.; Wang, F.; Shi, L. An essential role for sulfur in sulfide-silicate melt partitioning of gold and magmatic gold transport at subduction settings. Earth Planet. Sci. Lett. 2019, 528, 5850. [Google Scholar] [CrossRef]
- Crocket, J.H.; Fleet, M.E.; Stone, W.E. Experimental partitioning of osmium, iridium and gold between basalt melt and sulphide liquid at 1300 °C. Aust. J. Earth Sci. 1992, 39, 427–432. [Google Scholar] [CrossRef]
- Barnes, S.J. Partitioning of the platinum group elements and gold between silicate and sulphide magmas at Munni Munni Complex, Western Australia. Geochim. Cosmochim. Acta 1993, 57, 1277–1290. [Google Scholar] [CrossRef]
- Simon, A.C.; Pettke, T.; Candela, P.A.; Piccoli, P.M.; Heinrich, C.A. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblage. Geochim. Cosmochim. Acta 2007, 71, 1764–1782. [Google Scholar] [CrossRef]
- Zajacz, Z.; Candela, P.A.; Piccoli, P.M.; Walle, M.; Sanchez-Valle, C. Gold and copper in volatile saturated mafic and to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation. Geochim. Cosmochim. Acta 2012, 91, 140–159. [Google Scholar] [CrossRef]
- Li, Y.; Audetat, A. Gold solubility and partitioning between sulifde liquid, monosulfide solid solution and hydrous mantle melts: Implications for the formation of Au-rich magmas and crust-mantle differentiation. Geochim. Cosmochim. Acta 2013, 118, 247–262. [Google Scholar] [CrossRef]
- Nevstruev, V.G.; Berdnikov, N.V.; Didenko, A.N.; Saksin, B.G.; Lavrik, N.A. Fluidolites as a source of primary gold-platinum mineralization in the Poperechnoe Deposit (Malyi Khingan Range, Russia). Dokl. Earth Sci. 2018, 482, 1203–1206. [Google Scholar] [CrossRef]
- Nevstruev, V.G.; Berdnikov, N.V.; Saksin, B.G. A new type of noble metal mineralization in fluidolites of the Poperechnoye Deposit, Lesser Khingan, Russia. Russ. J. Pac. Geol. 2019, 13, 51–60. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Nevstruev, V.G.; Kepezhinskas, P.K.; Mochalov, A.G.; Yakubovich, O.V. PGE mineralization in andesite explosive breccias associated with the Poperechnoye iron-manganese deposit (Lesser Khingan, Far East Russia): Whole-rock geochemical, 190Pt-4He isotopic, and mineralogical evidence. Ore Geol. Rev. 2020, 118, 3352. [Google Scholar] [CrossRef]
- Egorov, E.V.; Timofeieva, M.W. Effusive iron-silica formations and iron-ore deposits of the Maly Khingan. In Genesis of Iron and Manganese Deposits. Proceedings of Kiev Symposium; UNESCO: Paris, France, 1973; pp. 181–185. [Google Scholar]
- Berdnikov, N.V.; Nevstruev, V.G.; Saksin, B.G. Sources and formation conditions of ferromanganese mineralization of the Bureya and Khanka massifs, Russian Far East. Russ. J. Pac. Geol. 2016, 10, 263–273. [Google Scholar] [CrossRef]
- Shatkov, G.A.; Volsky, A.S. Tectonics, Deep Structure and Minerageny of the Amur Region and Adjacent Areas; SPb VSEGEI Press: St. Petersburg, Russia, 2004; p. 190. (In Russian) [Google Scholar]
- Wilde, S.A.; Wu, F.Y.; Zhao, G. The Khanka Block, NE China, and its significance for the evolution of the Central Asian Orogenic Belt and continental accretion. Geol. Soc. Lond. Spec. Publ. 2010, 338, 117–137. [Google Scholar] [CrossRef]
- Luan, J.P.; Wang, F.; Xu, W.L.; Ge, W.C.; Sorokin, A.A.; Wang, Z.W.; Guo, P. Provenance, age, and tectonic implications of Neoproterozoic strata in the Jiamusi Massif: Evidence from U-Pb ages and Hf isotope compositions of detrital and magmatic zircons. Precambr. Res. 2017, 297, 19–32. [Google Scholar] [CrossRef]
- Morrison, G.W. Characteristics and tectonic setting of the shoshonite rock association. Lithos 1980, 13, 97–108. [Google Scholar] [CrossRef]
- Kepezhinskas, P. Diverse shoshonite magma series in the Kamchatka Arc: Relationships between intra-arc extension and composition of alkaline magmas. Geol. Soc. Lond. Spec. Publ. 1994, 81, 249–264. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Pearce, J.A. Trace element characteristics of lavas from destructive plate boundaries. Andesites 1982, 8, 525–548. [Google Scholar]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Defant, M.J.; Drummond, M.S. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochim. Cosmochim. Acta 1996, 60, 1217–1229. [Google Scholar] [CrossRef]
- Wood, D.A. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 1980, 50, 11–30. [Google Scholar] [CrossRef]
- Philpotts, A.R. Silicate liquid immiscibility in tholeiitic basalts. J. Petrol. 1979, 20, 99–118. [Google Scholar] [CrossRef]
- Kjarsgaard, B.A.; Hamilton, D.L. Liquid immiscibility and the origin of alkali-poor carbonatites. Mineral. Mag. 1988, 52, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Honour, V.C.; Holness, M.B.; Partridge, J.L.; Charlier, B. Microstructural evolution of silicate immiscible liquids in ferrobasalts. Contrib. Mineral. Petrol. 2019, 174, 77. [Google Scholar] [CrossRef] [Green Version]
- Wise, J. Gold Recovery, Properties and Applications; D. Van Nostrand Company: Taylorville, IL, USA, 1964; p. 167. [Google Scholar]
- Greenwood, N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heindemann: Oxford, UK, 1997; p. 1359. [Google Scholar]
- Perry, D.L. Handbook of Inorganic Compounds; CRC Press: Boca Raton, FL, USA, 1995; p. 354. [Google Scholar]
- Yudovskaya, M.D.; Distler, V.V.; Chaplygin, I.V.; Mokhov, A.V.; Trubkin, N.V.; Gorbachev, S.A. Gaseous transport and deposition of gold in magmatic fluid: Evidence from the active Kudryavy volcano, Kurile Islands. Mineral. Deposita 2006, 40, 828–848. [Google Scholar] [CrossRef]
- Chudnenko, K.V.; Pal’yanova, G.A. Thermodynamic properties of solid solutions in the Ag-Au-Cu system. Russ. Geol. Geophys. 2014, 55, 449–463. [Google Scholar] [CrossRef]
- Knight, J.; Leitch, C.H.B. Phase relations in the system Au-Cu-Ag at low temperatures, based on natural assemblages. Can. Mineral. 2001, 39, 889–905. [Google Scholar] [CrossRef] [Green Version]
- Neumann, J.P.; Zhong, T.; Chang, Y.A. The Cu-O (Copper-Oxygen) system. Bull. Alloy Phase Diagr. 1984, 5, 136–140. [Google Scholar] [CrossRef]
- Reid, S.J.B. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology; Cambridge University Press: Cambridge, UK, 2005; p. 212. [Google Scholar]
- Berdnikov, N.V.; Konovalova, N.S.; Zazulina, V.Y. Investigation of precious metal inclusions in highly carbonaceous rocks by the SEM and X-ray spectrum analysis methods. Russ. J. Pac. Geol. 2010, 4, 164–170. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-ray Microanalysis; Springer: New York, NY, USA, 2017; p. 550. [Google Scholar]
- Fredriksson, H.; Akerling, U. Solidification and Crystallization Processing in Metals and Alloys; John Wiley & Sons Ltd.: London, UK, 2012; p. 826. [Google Scholar]
- Gavrilin, I.V. Melting and Crystallization of Metals and Alloys; Vladimir State University: Vladimir, Russia, 2000; p. 260. (In Russian) [Google Scholar]
- Munitz, A.; Venkert, A.; Landau, P.; Kaufman, M.J.; Abbaschian, R. Microstructure and phase selection in supercooled copper alloys exhibiting metastable liquid miscibility gaps. J. Mater. Sci. 2012, 47, 7955–7970. [Google Scholar] [CrossRef]
- Lidin, R.R.; Andreeva, L.L.; Molotchko, V.A. Handbook of Constants for Inorganic Compounds; Drofa Publishers: Moscow, Russia, 2006; p. 685. (In Russian) [Google Scholar]
- Lamiri, I.; Abdelbaky, M.S.M.; Hamana, D.; Granda, G.S. Metastable phase in binary and ternary 12-carat gold alloys at low temperature. Mater. Res. Express 2018, 5, 6506. [Google Scholar] [CrossRef]
- Zhang, J.; Li. Y. Effects of different rotation speeds on microstructure, hardness and corrosion resistance of the Au-Cu alloy. Gold Bull. 2017, 50, 137–145. [Google Scholar] [CrossRef]
- Pezzato, L.; Magnabosco, G.; Brunelli, K. Microstructure and mechanical properties of a 18 Kt 5N gold alloy after different heat treatments. Metallogr. Microstruct. Anal. 2016, 5, 116–123. [Google Scholar] [CrossRef]
- Pakhomova, V.A.; Zalischak, B.L.; Korzhinskaya, V.S.; Afanasieva, T.B.; Lapina, M.I. Genetic peculiarities of the formation of helzircon-baddeleyite ores based on thermobarogeochemical data (a case study of the Algama deposit, Khabarovsk region). In Ore Deposits at Continental Margins; Dalnauka: Vladivostok, Russia, 2000; pp. 248–262. (In Russian) [Google Scholar]
- Korzhinskaya, V.S.; Nekrasov, I.Y. Stability of the association ZrSiO4-SiO2-ZrO2 in alkaline solutions at temperature of 500 °C and pressure of 1 kbar. Dokl. Earth Sci. 1998, 359, 205–207. [Google Scholar]
- Ozolins, V.; Wolverton, C.; Zunger, A. Cu-Au, Ag-Au, Cu-Ag and Ni-Au intermetallics: First-principles study of phase diagrams and structures. Phys. Rev. B. Cond. Matter 1998, 57, 6427–6443. [Google Scholar] [CrossRef] [Green Version]
- Andrieux, J.; Dezellus, O.; Bosselet, F.; Peronnet, S.M.; Sigala, C.; Chirioc, R.; Viala, J.C. Details on the formation of Ti2Cu3 in the Ag-Cu-Ti system in the temperature range 790–860 °C. J. Phase Equil. Diffus. 2008, 29, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.L. Phase Diagrams of Binary Titanium Alloys; ASM International: Geauga, OH, USA, 1987; p. 345. [Google Scholar]
- Pal’yanova, G.A.; Kokh, K.A.; Seryotkin, Y.V. Formation of gold-silver sulfides and native gold in Fe-Ag-Au-S system. Russ. Geol. Geophys. 2012, 53, 347–355. [Google Scholar] [CrossRef]
- Cook, N.J.; Chryssoulis, S.L. Concentrations of “invisible gold” in the common sulfides. Can. Mineral. 1990, 28, 1–16. [Google Scholar]
- Barnes, S.J.; Cox, R.J.; Zientek, M.L. Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril’sk, Russia. Contrib. Mineral. Petrol. 2006, 152, 187–200. [Google Scholar] [CrossRef]
- Zelenski, M.; Kamenetsky, V.S.; Mavrogenes, J.A.; Danyushevsky, L.V.; Matveev, D.; Gurenko, A.A. Platinum-group elements and gold in sulfide melts from modern arc basalt (Tolbachik volcano, Kamchatka). Lithos 2017, 290–291, 172–188. [Google Scholar] [CrossRef] [Green Version]
- Trubac, J.; Ackerman, L.; Gauert, C.; Durisova, J.; Hrstka, T. Platinum-group elements and gold in base metal sulfides, platinum-group minerals, and Re-Os isotope compositions of the Uitkomst Complex, South Africa. Econ. Geol. 2018, 113, 439–461. [Google Scholar] [CrossRef]
- Frank, M.R.; Candela, P.A.; Piccoli, P.M.; Glascock, M.D. Gold solubility, speciation, and partitioning as a function of HCl in the brine-silicate melt-metallic gold system at 800 °C and 100 MPa. Geochim. Cosmochim. Acta 2002, 66, 3719–3732. [Google Scholar] [CrossRef]
- Sullivan, N.A.; Zajacz, Z.; Brenan, J.M. The solubility of Pd and Au in hydrous intermediate silicate melts: The effect of oxygen fugacity and the addition of Cl and S. Geochim. Cosmochim. Acta 2018, 231, 15–29. [Google Scholar] [CrossRef]
- Jégo, S.; Nakamura, M.; Kimura, J.I.; Iizuka, Y.; Chang, Q.; Zellmer, G.F. Is gold solubility subject to pressure variations in ascending arc magmas? Geochim. Cosmochim. Acta 2016, 188, 224–243. [Google Scholar] [CrossRef] [Green Version]
- Wernette, B.; Li, P.; Boudreau, A. Sulfides, native metals, and associated trace minerals of the Skaergaard intrusion, Greenland: Evidence for late hydrothermal fluids. Mineral. Deposita 2020, 55, 1197–1214. [Google Scholar] [CrossRef]
- Cameron, E.M.; Hattori, K. Archean gold mineralization and oxidized hydrothermal fluids. Econ. Geol. 1987, 82, 1177–1191. [Google Scholar] [CrossRef]
- Heald, P.; Foley, N.K.; Hayba, D.O. Comparative anatomy of volcanic-hosted epithermal deposits: Acid sulfate and adularia-serecite types. Econ. Geol. 1987, 82, 1–26. [Google Scholar] [CrossRef]
- Simmons, S.F.; Browne, P.R.L. Mineralogic, alteration and fluid-inclusion studies of epithermal gold-bearing veins at the Mt. Muro Prospect, Central Kalimantan (Borneo), Indonesia. J. Geochem. Explor. 1990, 35, 63–103. [Google Scholar] [CrossRef]
- Rye, R.O. The evolution of magmatic fluids in the epithermal environment: The stable isotope perspective. Econ. Geol. 1993, 88, 733–752. [Google Scholar] [CrossRef]
- Pal’yanova, G.A.; Kolonin, G.R. Geochemical mobility of Au and Ag during hydrothermal transfer and precipitation: Thermodynamic simulation. Geochem. Int. 2007, 45, 744–757. [Google Scholar] [CrossRef]
- Yesares, L.; Aiglsperger, T.; Sáez, R.; Almodóvar, G.R.; Nieto, J.M.; Proenza, J.A.; Gómez, C.; Escobar, J.M. Gold behavior in supergene profiles under changing redox conditions: The example of the Las Cruces deposit, Iberian Pyrite Belt. Econ. Geol. 2015, 110, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ballhaus, C.; Sylvester, P. Noble metal enrichment processes in the Merensky Reef, Bushveld Complex. J. Petrol. 2000, 41, 545–561. [Google Scholar] [CrossRef] [Green Version]
- Anenburg, M.; Mavrogenes, J.A. Noble metal nanonugget insolubility in geological sulfide liquids. Geology 2020, 48, 939–943. [Google Scholar] [CrossRef]
- Nielsen, T.F.D.; Andersen, J.C.Ø.; Holness, M.B.; Keiding, J.K.; Rudashevsky, N.S.; Rudashevsky, V.N.; Salmonsen, L.P.; Tegner, C.; Veksler, I.V. The Skaergaard PGE and gold deposit: The result of in situ fractionation, sulphide saturation, and magma chamber-scale precious metal redistribution. J. Petrol. 2015, 56, 1643–1676. [Google Scholar] [CrossRef] [Green Version]
- Borisov, A.A.; Palme, H. Solubilities of noble metals in Fe-containing silicate melts as derived from experiments in Fe-free systems. Amer. Mineral. 2000, 85, 1665–1673. [Google Scholar] [CrossRef]
- Widom, E.; Kepezhinskas, P.; Defant, M.J. The nature of metasomatism in the sub-arc mantle wedge: Evidence from Re-Os isotopes in Kamchatka peridotite xenoliths. Chem. Geol. 2003, 196, 283–306. [Google Scholar] [CrossRef]
- Kiseeva, E.S.; Fonseca, R.O.C.; Smythe, D.J. Chalcophile elements and sulfides in the upper mantle. Elements 2017, 13, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Luguet, A.; Pearson, G. Dating mantle peridotites using Re-Os isotopes: The complex message from whole rocks, base metal sulfides, and platinum group minerals. Am. Mineral. 2019, 104, 165–189. [Google Scholar] [CrossRef]
- Hattori, K. High-sulfur magma, a product of fluid discharge from underlying mafic magma: Evidence from Mount Pinatubo, Philippines. Geology 1993, 21, 1083–1086. [Google Scholar] [CrossRef]
- Larocque, A.C.L.; Stimac, J.A.; Keith, J.D.; Huminicki, M.A.E. Evidence for open-system behavior in immiscible Fe-S-O liquids in silicate magmas: Implications for contributions of metals and sulfur to ore-forming fluids. Can. Mineral. 2000, 38, 1233–1249. [Google Scholar] [CrossRef] [Green Version]
- Georgatou, A.A.; Chiaradia, M. Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks. Solid Earth 2020, 11, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Métrich, N.; Mandeville, C.W. Sulfur in magmas. Elements 2010, 6, 81–86. [Google Scholar] [CrossRef]
- Lawley, C.J.M.; Petts, D.C.; Jackson, S.E.; Zagorevski, A.; Pearson, D.G.; Kjarsgaard, B.A.; Savard, D.; Tschirhart, V. Precious metal mobility during serpentinization and breakdown of base metal sulphide. Lithos 2020, 354–355, 105278. [Google Scholar] [CrossRef]
- Buisson, G.; Leblanc, M. Gold in mantle peridotites from Upper Proterozoic ophiolites in Arabia, Mali, and Morocco. Econ. Geol. 1987, 82, 2091–2097. [Google Scholar] [CrossRef]
- Lorand, J.P.; Alard, O.; Luguet, A. Platinum-group element micronuggets and refertilization process in Lherz orogenic peridotite (northeastern Pyrenees, France). Earth Planet. Sci. Lett. 2010, 289, 298–310. [Google Scholar] [CrossRef]
- Krieger, P.; Hagner, A.F. Gold-nickel mineralization at Alistos, Sinaloa, Mexico. Am. Mineral. 1943, 28, 257–271. [Google Scholar]
- Sluzhenikin, S.F.; Mokhov, A.V. Gold and silver in PGE-Cu-Ni and PGE ores of the Noril’sk deposits, Russia. Mineral. Depos. 2015, 50, 465–497. [Google Scholar] [CrossRef]
- Helmy, H.M.; Ballhaus, C.; Fonseca, R.O.C.; Wirth, R.; Nagel, T.J.; Tredoux, M. Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulfide melts. Nat. Commun. 2013, 4, 2405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peregoedova, A.; Barnes, S.J.; Baker, D.R. The formation of Pt-Ir alloys and Cu-Pd-rich sulfide melts by partial desulfurization of Fe-Ni-Cu sulfides: Results of experiments and implications for natural systems. Chem. Geol. 2004, 208, 247–264. [Google Scholar] [CrossRef]
- Williams, P.J.; Barton, M.D.; Johnson, D.A.; Fontbote, L.; de Haller, A.; Mark, G.; Oliver, N.H.S.; Marschik, R. Iron oxide copper-gold deposits: Geology, space-time distribution and possible modes of origin. Econ. Geol. 2005, 100, 371–405. [Google Scholar]
- Naslund, R.H.; Henriquez, F.; Nyström, J.O.; Vivallo, W.; Dobbs, F.M. Magmatic iron ores and associated mineralization: Examples from the Chilean High Andes and Coastal Cordillera. In Hydrothermal Iron Oxide-Copper-Gold & Related Deposits: A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2002; Volume 2, pp. 207–226. [Google Scholar]
- Sillitoe, R.H. Iron oxide-copper-gold deposits: An Andean view. Mineral. Depos. 2003, 38, 787–812. [Google Scholar] [CrossRef]
- Ootes, L.; Snyder, D.; Davis, W.J.; Gongora, A.P.; Corriveau, L.; Mumin, A.; Gleeson, S.A.; Samson, I.M.; Montreuil, J.F.; Potter, E.; et al. A Paleoproterozoic Andean-type iron-oxide copper-gold enrichment, the Great Bear magmatic zone, Northwest Canada. Ore Geol. Rev. 2017, 81, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Barra, F.; Reich, M.; Rojas, P.; Selby, D.; Simon, A.C.; Salazar, E.; Palma, G. Unraveling the origin of the Andean IOCG Clan: A Re-Os isotope approach. Ore Geol. Rev. 2017, 81, 62–78. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z. Gold in iron oxide copper-gold deposits. Ore Geol. Rev. 2016, 72, 37–42. [Google Scholar] [CrossRef]
- Childress, T.M.; Simon, A.C.; Reich, M.; Barra, F.; Arce, M.; Lundstrom, C.C.; Bindeman, I.N. Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: Insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits. Mineral. Depos. 2020, 55, 1489–1504. [Google Scholar] [CrossRef]
- Barton, M.D.; Johnson, D.A. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology 1996, 26, 259–262. [Google Scholar] [CrossRef]
- Benavides, J.; Kyser, T.K.; Clark, A.H.; Oates, C.J.; Zamora, R.; Tarnovschi, R.; Castillo, B. The Mantoverde iron oxide-copper-gold district, III Región, Chile: The role of regionally derived, non-magmatic fluids in chalcopyrite mineralization. Econ. Geol. 2007, 102, 415–440. [Google Scholar] [CrossRef]
- Barton, M.D. Iron oxide (-Cu-Au-REE-P-Ag-U-Co) systems. In Geochemistry of Mineral Deposits, 2nd ed.; Scott, S.D., Ed.; Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2013; Volume 13, pp. 515–541. [Google Scholar]
- Pollard, P.J. An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces. Mineral. Depos. 2006, 41, 179–187. [Google Scholar] [CrossRef]
- Tornos, F.; Velasco, F.; Barra, F.; Morata, D. The Tropezón Cu-Mo-(Au) deposit, Northern Chile: The missing link between IOCG and porphyry copper systems? Mineral. Depos. 2010, 45, 313–321. [Google Scholar] [CrossRef]
- Richards, J.P.; Mumin, A.H. Magmatic-hydrothermal processes within an evolving Earth: Iron oxide-copper-gold and porphyry Cu ± Mo ± Au deposits. Geology 2013, 41, 767–770. [Google Scholar] [CrossRef]
- Groves, D.I.; Bierlein, F.P.; Meinert, L.D.; Hitzman, M.W. Iron oxide-copper-gold (IOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ. Geol. 2010, 105, 641–654. [Google Scholar] [CrossRef] [Green Version]
- Chiaradia, M.; Banks, D.; Clift, R.; Marschik, R.; de Haller, A. Origin of fluids in iron oxide-copper-gold deposits: Constraints from δ37Cl, 87Sr/86Sri, and Cl/Br. Mineral. Depos. 2006, 41, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Kouzmanov, K.; Pokrovsky, G.S. Hydrothermal controls on metal distribution in porphyry Cu(-Mo-Au) systems. Soc. Econ. Geol. Spec. Publ. 2012, 16, 573–618. [Google Scholar]
- Wilkinson, J.J. Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat. Geosci. 2013, 6, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, C.A.; Driesner, T.; Stefansson, A.; Seward, T.M. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 2004, 32, 761–764. [Google Scholar] [CrossRef]
- Kesler, S.E.; Chryssoulis, S.L.; Simon, G. Gold in porphyry copper deposits: Its abundance and fate. Ore Geol. Rev. 2002, 21, 103–124. [Google Scholar] [CrossRef]
Poperechnoye | Kostenga | Kaylan | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Oxide/Element | Fe-Ore | Breccia | Carbonate. | Carb.- Like Rock | Basalt | Fe-Ore | Breccia | Tuff | Fe-Ore | Breccia | Tuff |
SiO2 (wt.%) | 48.32 | 50.68 | 7.77 | 9.39 | 52.08 | 65.85 | 41.39 | 49.98 | 39.06 | 54.79 | 57.75 |
TiO2 | 0.17 | 0.81 | 0.09 | 0.02 | 1.57 | 0.11 | 0.55 | 0.96 | 0.23 | 0.65 | 0.71 |
Al2O3 | 2.24 | 11.37 | 0.87 | 0.22 | 10.46 | 1.88 | 8.60 | 11.43 | 2.47 | 9.27 | 9.81 |
Fe2O3 | 38.32 | 9.02 | 1.68 | 1.88 | 10.72 | 26.67 | 6.86 | 8.38 | 48.29 | 16.31 | 11.15 |
MnO | 0.50 | 0.18 | 0.15 | 0.87 | 0.13 | 0.99 | 1.27 | 0.13 | 0.22 | 2.19 | 3.92 |
CaO | 2.79 | 6.88 | 29.35 | 29.68 | 4.72 | 0.69 | 11.43 | 6.26 | 0.67 | 3.08 | 3.24 |
MgO | 3.47 | 7.02 | 18.11 | 16.49 | 10.93 | 1.52 | 9.65 | 7.75 | 2.46 | 1.80 | 1.33 |
Na2O | 0.58 | 1.08 | 0.25 | 0.00 | 5.54 | 0.10 | 0.11 | 0.37 | 0.14 | 0.21 | 0.21 |
K2O | 0.58 | 2.34 | 0.01 | 0.01 | 0.32 | 0.37 | 1.81 | 2.23 | 0.05 | 0.55 | 1.85 |
P2O5 | 0.40 | 0.08 | 0.02 | 0.00 | 0.14 | 0.33 | 0.08 | 0.14 | 0.23 | 0.12 | 0.09 |
LOI | 2.55 | 10.99 | 43.32 * | 43.65 * | 3.38 | 1.48 | 18.4 | 12.14 | 6.02 | 10.92 | 9.66 |
Total | 99.93 | 100.45 | 101.61 | 102.21 | 99.98 | 99.99 | 100.16 | 100.49 | 99.85 | 99.91 | 100.00 |
Sc (ppm) | 3.89 | 15.65 | 1.77 | <0.001 | 17.96 | 3.48 | 10.00 | 22.31 | 6.75 | 11.51 | 14.47 |
V | 40.65 | 62.58 | 15.31 | 0.38 | 134.24 | 47.78 | 96.09 | 167.88 | 59.33 | 132.59 | 149.56 |
Cr | 21.45 | 34.57 | 16.77 | 5.03 | 356.63 | 22.84 | 75.78 | 135.74 | 17.95 | 83.27 | 78.57 |
Co | 7.15 | 8.93 | 1.43 | 9.36 | 45.57 | 22.97 | 43.07 | 10.86 | 1.21 | 49.19 | 154.18 |
Ni | 15.27 | 106.73 | 15.64 | 11.51 | 166.39 | 37.11 | 122.36 | 34.68 | 12.27 | 78.47 | 781.52 |
Cu | 3.40 | 49.24 | 13.36 | 17.32 | 51.53 | <0.001 | 23.89 | 25.00 | 12.67 | 31.28 | 146.84 |
Zn | 27.96 | 73.3 | 18.24 | 24.77 | 127.97 | 32.89 | 65.06 | 78.53 | 27.61 | 57.15 | 81.38 |
Ga | 2.52 | 15.24 | 1.65 | 0.30 | 19.92 | 2.07 | 11.66 | 13.64 | 4.55 | 15.08 | 16.38 |
Rb | 28.22 | 89.67 | 8.93 | 0.31 | 8.10 | 31.42 | 60.70 | 92.67 | 2.20 | 24.05 | 76.19 |
Sr | 61.63 | 56.54 | 99.30 | 67.96 | 208.9 | 41.88 | 85.74 | 94.04 | 11.31 | 36.96 | 48.88 |
Y | 7.73 | 14.85 | 5.53 | 0.87 | 15.37 | 4.82 | 8.60 | 15.35 | 32.35 | 17.92 | 19.69 |
Zr | 7.18 | 61.64 | 10.12 | 2.41 | 57.49 | 6.44 | 60.54 | 131.69 | 13.64 | 60.78 | 63.66 |
Nb | 4.60 | 2.10 | 0.25 | 0.19 | 9.92 | 1.38 | 1.31 | 6.42 | 3.04 | 4.89 | 5.43 |
Ag | 0.59 | 0.29 | <0.001 | 0.07 | 0.16 | 2.44 | 0.62 | 0.81 | 0.33 | 0.50 | 0.26 |
Sn | 0.23 | 1.99 | 0.11 | <0.001 | 1.17 | <0.001 | 1.38 | 2.74 | 0.05 | 1.84 | 2.44 |
Cs | 6.73 | 4.17 | 0.40 | 0.09 | 2.54 | 18.91 | 2.20 | 3.84 | 0.57 | 4.00 | 6.13 |
Ba | 107.22 | 557.71 | 69.81 | 47.79 | 308.44 | 822.80 | 824.37 | 498.14 | 82.09 | 151.73 | 220.81 |
La | 3.87 | 21.43 | 3.62 | 0.49 | 6.11 | 2.31 | 21.56 | 30.84 | 11.91 | 23.86 | 28.03 |
Ce | 9.11 | 48.44 | 7.94 | 1.00 | 13.81 | 4.83 | 42.25 | 63.81 | 20.77 | 47.08 | 56.70 |
Pr | 1.19 | 5.46 | 0.95 | 0.11 | 1.84 | 0.68 | 5.21 | 7.85 | 3.63 | 5.92 | 6.77 |
Nd | 5.53 | 23.56 | 3.89 | 0.44 | 8.73 | 2.96 | 19.67 | 30.65 | 16.40 | 21.71 | 23.51 |
Sm | 1.26 | 5.02 | 0.86 | 0.09 | 2.67 | 0.71 | 3.76 | 5.75 | 3.82 | 4.06 | 4.58 |
Eu | 0.26 | 0.91 | 0.20 | 0.03 | 1.02 | 0.19 | 0.73 | 1.04 | 0.97 | 0.69 | 0.88 |
Gd | 1.56 | 4.93 | 1.05 | 0.12 | 3.57 | 0.87 | 3.62 | 5.27 | 5.04 | 4.21 | 4.93 |
Tb | 0.22 | 0.63 | 0.15 | 0.02 | 0.56 | 0.13 | 0.41 | 0.61 | 0.77 | 0.57 | 0.73 |
Dy | 1.53 | 3.63 | 0.85 | 0.10 | 3.19 | 0.78 | 2.00 | 3.06 | 4.83 | 3.11 | 3.92 |
Ho | 0.31 | 0.64 | 0.17 | 0.02 | 0.60 | 0.16 | 0.38 | 0.58 | 1.07 | 0.64 | 0.80 |
Er | 1.01 | 1.99 | 0.51 | 0.07 | 1.59 | 0.52 | 1.21 | 1.85 | 3.28 | 1.94 | 2.37 |
Tm | 0.14 | 0.26 | 0.07 | 0.01 | 0.21 | 0.08 | 0.18 | 0.32 | 0.46 | 0.30 | 0.37 |
Yb | 0.98 | 1.90 | 0.47 | 0.07 | 1.28 | 0.57 | 1.35 | 2.04 | 3.00 | 1.92 | 2.39 |
Lu | 0.15 | 0.27 | 0.07 | 0.01 | 0.18 | 0.10 | 0.22 | 0.32 | 0.47 | 0.31 | 0.40 |
Hf | 0.23 | 1.69 | 0.23 | <0.001 | 1.80 | <0.001 | 1.59 | 3.28 | 0.35 | 1.83 | 1.81 |
Ta | 0.29 | 0.19 | <0.001 | <0.001 | 0.84 | 0.03 | 0.21 | 0.39 | 0.13 | 0.46 | 0.51 |
Pb | 5.91 | 6.59 | 0.58 | <0.001 | 2.33 | 0.79 | 15.03 | 2.34 | 4.35 | 9.24 | 18.00 |
Th | 1.37 | 6.89 | 0.72 | <0.001 | 0.68 | 0.77 | 6.24 | 9.48 | 1.47 | 6.94 | 7.31 |
U | 0.36 | 0.52 | 0.16 | 0.00 | 0.21 | 0.27 | 1.08 | 3.94 | 1.65 | 1.85 | 2.60 |
Element | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O | 3.6 | 5.0 | 4.7 | 6.5 | 9.1 | 25.5 | 9.7 | 11.1 | 6.9 | 17.1 | |||
Ti | 0.7 | 13.1 | 11.9 | 1.9 | 39.3 | ||||||||
Cr | 0.3 | 0.4 | 1.6 | ||||||||||
Fe | 0.3 | 0.6 | 0.4 | ||||||||||
Ni | 3.1 | 0.6 | 2.0 | 6.1 | |||||||||
Cu | 61.8 | 17.8 | 13.9 | 6.1 | 8.6 | 29.0 | 33.8 | 58.8 | 31.8 | 51.8 | 43.5 | 78.1 | 42.6 |
Zn | 2.5 | 7.6 | 2.0 | 13.9 | |||||||||
Ag | 8.0 | 1.5 | 1.0 | 68.2 | 2.2 | 8.4 | 6.3 | 3.2 | 6.2 | 4.9 | 3.7 | 2.3 | 2.4 |
Au | 23.5 | 62.2 | 68.5 | 17.3 | 40.8 | 62.7 | 59.9 | 1.2 | 61.9 | 32.7 | 37.8 | 12.3 | 15.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berdnikov, N.; Nevstruev, V.; Kepezhinskas, P.; Astapov, I.; Konovalova, N. Gold in Mineralized Volcanic Systems from the Lesser Khingan Range (Russian Far East): Textural Types, Composition and Possible Origins. Geosciences 2021, 11, 103. https://doi.org/10.3390/geosciences11020103
Berdnikov N, Nevstruev V, Kepezhinskas P, Astapov I, Konovalova N. Gold in Mineralized Volcanic Systems from the Lesser Khingan Range (Russian Far East): Textural Types, Composition and Possible Origins. Geosciences. 2021; 11(2):103. https://doi.org/10.3390/geosciences11020103
Chicago/Turabian StyleBerdnikov, Nikolai, Victor Nevstruev, Pavel Kepezhinskas, Ivan Astapov, and Natalia Konovalova. 2021. "Gold in Mineralized Volcanic Systems from the Lesser Khingan Range (Russian Far East): Textural Types, Composition and Possible Origins" Geosciences 11, no. 2: 103. https://doi.org/10.3390/geosciences11020103
APA StyleBerdnikov, N., Nevstruev, V., Kepezhinskas, P., Astapov, I., & Konovalova, N. (2021). Gold in Mineralized Volcanic Systems from the Lesser Khingan Range (Russian Far East): Textural Types, Composition and Possible Origins. Geosciences, 11(2), 103. https://doi.org/10.3390/geosciences11020103