A New Magma Type in the Continental Collision Zone. The Case of Capraia Island (Tuscany, Italy)
Abstract
:1. Introduction
2. The Tuscany Magmatic Province
The Capraia Island
3. Materials and Methods
Analytical Methods
4. Results
4.1. Petrography and Mineral Chemistry
4.2. Geochemistry
5. Discussion
5.1. Classification, Occurrence and Genetic Processes of Sr-Ba-LREE–Rich Rocks
5.2. Petrogenesis of Laghetto Rocks
5.3. Regional Distribution and Geodynamic Significance
6. Conclusions
- A series of high-Sr-Ba andesite-dacite rocks occur at Capraia in the Laghetto area, representing a particular stage of calcalkaline activity at ~ 7 Ma. They have a composition that is intermediate between adakitic and calcalkaline rocks.
- Geochemical data suggest that these rocks cannot be related to other calcalkaline rocks occurring on the island by fractional crystallisation but represent a distinct type of magma.
- Geochemical modelling suggests that the most likely hypothesis is the generation at mantle pressure by melting of the lower continental crust, followed by mixing with other mantle-derived Capraia magmas.
- A similar rock type also occurs at Elba Island and is almost coeval with those from Capraia and possibly at San Vincenzo, on the mainland Tuscany. In contrast, it seems to be absent in other sectors of the Tuscany magmatic province.
- The geodynamic model that best explains the composition of the studied rocks is the thickening of the continental crust during a continental collision, followed by extension that favoured melting of the lower crust. Such a process was possible during the early stages of extension, shortly after the collision event. This explains why lower crustal melting and formation of adakitic-like magmas are restricted to older stages of magmatism in Tuscany.
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Civetta, L.; Orsi, G.; Scandone, P.; Pece, R. Eastwards migration of the Tuscan anatectic magmatism due to anticlockwise rotation of the Apennines. Nature 1978, 276, 604–606. [Google Scholar] [CrossRef]
- Peccerillo, A. Plio-Quaternary volcanism in Italy. In Petrology, Geochemistry, Geodynamics; Springer: Berlin/Heidelberg, Germany, 2005; 365p. [Google Scholar]
- Poli, G.; Peccerillo, A. The Upper Miocene magmatism of the Island of Elba (Central Italy): Compositional characteristics, petrogenesis and implications for the origin of the Tuscany Magmatic Province. Miner. Pet. 2016, 110, 421–445. [Google Scholar] [CrossRef]
- Aldighieri, B.; Groppelli, G.; Norini, G.; Testa, B. Capraia Island: Morphology and Geology of a Complex Volcanic activity during the Miocene and Pliocene. In The Regione Toscana project of Geological Mapping, Case Histories and Data Acquisition; Morini, D., Bruni, P., Eds.; Tipografia Martinelli: Bagno a Ripoli, Italy, 2004; pp. 51–59. [Google Scholar]
- Poli, G.; Peccerillo, A. Lamproitic rocks from the Tuscan Magmatic Province. Per. Miner. 2003, 72, 225–231. [Google Scholar]
- Peccerillo, A. Cenozoic Volcanism in the Tyrrhenian Sea Region; Springer: Berlin/Heidelberg, Germany, 2017; 399p. [Google Scholar]
- Peccerillo, A.; Poli, G.; Serri, G. Petrogenesis of orenditic and kamafugitic rocks from Central Italy. Canad. Miner. 1988, 26, 45–65. [Google Scholar]
- Peccerillo, A.; Martinotti, G. The Western Mediterranean lamproitic magmatism: Origin and geodynamic significance. Terra Nova 2006, 18, 109–117. [Google Scholar] [CrossRef]
- Conticelli, S.; Guarnieri, L.; Farinelli, A.; Mattei, M.; Avanzinelli, R.; Bianchini, G.; Boari, E.; Tommasini, S.; Tiepolo, M.; Prelević, D.; et al. Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the western mediterranean region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 2009, 107, 68–92. [Google Scholar] [CrossRef] [Green Version]
- Conticelli, S.; Laurenzi, M.A.; Giordano, G.; Mattei, M.; Avanzinelli, R.; Melluso, L.; Tommasini, S.; Boari, E.; Cifelli, F.; Perini, G. Leucite-bearing (kamafugitic/leucititic) and -free (lamproitic) ultrapotassic rocks and associated shoshonites from Italy: Constraints on petrogenesis and geodynamics. J. Virtual Explor. 2010, 36, 20. [Google Scholar] [CrossRef]
- Poli, G. Geochemistry of Tuscan Archipelago granitoids, central Italy: The role of ybridization processes in their genesis. J. Geol. 1992, 100, 41–56. [Google Scholar] [CrossRef]
- Poli, G. Genesis and evolution of Miocene-Quaternary intermediate-acid rocks from the Tuscan Magmatic Province. Per. Miner. 2004, 73, 187–214. [Google Scholar]
- Farina, F.; Stevens, G.; Dini, A.; Rocchi, S. Peritectic phase entrainment and magma mixing in the late Miocene Elba Island laccolith-pluton-dyke complex (Italy). Lithos 2012, 153, 243–260. [Google Scholar] [CrossRef]
- Pinarelli, L.; Poli, P.; Santo, A.P. Geochemical characterization of recent volcanism from the Tuscan Magmatic province (Italy): The Roccastrada and San Vincenzo centers. Per. Miner. 1989, 58, 67–96. [Google Scholar]
- Dini, A.; Innocenti, F.; Rocchi, S.; Tonarini, S.; Westermam, D.S. The magmatic evolution of the late Miocene laccolith-pluton-dyke granitic complex of Elba Island, Italy. Geol. Mag. 2002, 139, 257–279. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Perugini, D.; Cesare, B.; Braga, R.; Del Moro, S. Unravelling the complex interaction between mantle and crustal magmas encoded in the lavas of San Vincenzo (Tuscany, Italy). Lithos 2016, 244, 233–249, Part II: Geochemical overview and modelling. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Martin, H. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos 1999, 46, 411–429. [Google Scholar] [CrossRef]
- Castillo, P.R. Adakite petrogenesis. Lithos 2012, 134, 304–316. [Google Scholar] [CrossRef]
- Ribeiro, J.M.; Maury, R.C.; Grégoire, M. Are Adakites slab melts or high-pressure fractionated mantle melts? J. Pet. 2016, 57, 839–862. [Google Scholar] [CrossRef] [Green Version]
- Rodolico, F. Le rocce dell’isola di Capraia. Ricerche sulle rocce eruttive recenti della Toscana. Atti Soc. Toscana Sci. Nat. 1938, 47, 125–136. [Google Scholar]
- Franzini, M. Studio mineralogico e litologico dell’isola di Capraia. Atti Soc. Toscana Sci. Nat. 1964, 71, 326–386. [Google Scholar]
- Barberi, F.; Ferrara, G.; Franchi, F.; Serri, G.; Tonarini, S.; Treuil, M. Geochemistry and geochronology of the Capraia Island volcanic Complex (North Tyrrhenian Sea, Italy). Terra Cognita 1986, 6, 185. [Google Scholar]
- Poli, G.; Prosperini, N.; Conticelli, S.; Ogna, M. Petrology and Geochemistry of Capraia Island (Tuscan Archipelago, Italy): Complex Origin of a Calc-alkaline Volcano. Plinius 1995, 14, 121–122. [Google Scholar]
- Poli, G.; Perugini, D. The Island of Capraia. In Miocene to Recent Plutonism and Volcanism in the Tuscan Magmatic Region (Central Italy); International Mineralogical Association: Bochum, Germany, 2003; Volume 72, pp. 195–201. [Google Scholar]
- Borelli, E.; Groppelli, G.; Aldighieri, B.; Battaglia, A.; Gamba, A.; Gasparon, M.; Malara, F.; Pasquare, G.; Serri, G.; Testa, B. Evoluzione geologica dell’Isola di Capraia (Arcipelago Toscano) nel quadro della geodinamica del Tirreno settentrionale. Geoacta 2003, 2, 19–22. [Google Scholar]
- Gasparon, M.; Rosenbaum, G.; Wijbrans, J.; Manetti, P. The transition from subduction arc to slab tearing: Evidence from Capraia Island, northern Tyrrhenian Sea. J. Geodyn. 2009, 47, 30–38. [Google Scholar] [CrossRef]
- Prosperini, N. Petrologia e Geochimica delle Rocce di Capraia (Arcipelago Toscano, Italia): Un Vulcano Calcalcalino di Origine Complessa. Bachelor’s Thesis, University of Perugia, Perugia, Italy, 1993. [Google Scholar]
- Pouchou, J.L.; Pichoir, F. Basic expressions of PAP computation for quantitative EPMA. In Proceedings of the 11th ICXOM, Toronto, ON, Canada, 4–8 August 1987; pp. 249–253. [Google Scholar]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A neodymium isotopic reference in consistency with La Jolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Morimoto, N. Nomenclature of pyroxenes. Can. Miner. 1988, 27, 143–156. [Google Scholar]
- Le Maitre, R.W. Igneous Rocks: A Classification and Glossary of Terms; Cambridge University Press: Cambridge, UK, 2002; p. 236. [Google Scholar]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks of the Kastamonu area, northern Turkey. Contrib. Miner. Pet. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Ferrara, G.; Petrini, R.; Serri, G.; Tonarini, S. Petrology and isotope geochemistry of San Vincenzo rhyolites (Tuscany, Italy). B Volcanol. 1989, 51, 379–388. [Google Scholar] [CrossRef]
- Gagnevin, D.; Daly, J.S.; Poli, G. Petrographic, geochemical and isotopic constraints on magma dynamics and mixing in the Miocene Monte Capanne monzogranite (Elba Island, Italy). Lithos 2004, 78, 157–195. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Chung, S.L.; Liu, D.Y.; Ji, J.Q.; Chu, M.F.; Lee, H.Y.; Wen, D.J.; Lo, C.H.; Lee, T.Y.; Qian, Q.; Zhang, Q. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology 2003, 31, 1021–1024. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.; Kerrich, R. Special Paper: Adakite-Like Rocks: Their diverse origins and questionable role in metallogenesis. Econ. Geol. 2007, 102, 536–576. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B.; Miller, C.F. Partial melting of amphibolite, eclogite and the origin of Archaean trondhjemites and tonalites. Precambrian Res. 1991, 51, 1–25. [Google Scholar] [CrossRef]
- Goss, A.R.; Kay, S.M. Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: Evidence for forearc subduction erosion? Geoch. Geoph. Geosystems 2006, 7, 05016. [Google Scholar] [CrossRef] [Green Version]
- Goss, A.R.; Kay, S.M. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (28° S, 68° W). Earth Planet Sci. Lett. 2009, 279, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Macpherson, C.G.; Dreher, S.T.; Thirwall, M.F. Adakites without slab melting: High pressure processing of basaltic island arc magma, Mindanao, the Philippines. Earth Planet Sci. Lett. 2006, 43, 581–593. [Google Scholar] [CrossRef] [Green Version]
- Castillo, P.R. The origin of the adakite—High-Nb basalt association and its implications for post-subduction magmatism in Baja California, Mexico. Geol. Soc. Am. Bull. 2008, 120, 451–462. [Google Scholar] [CrossRef]
- Alonso-Perez, R.; Müntener, O.; Ulmer, P. Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids. Contrib. Miner. Pet. 2009, 157, 541–558. [Google Scholar] [CrossRef] [Green Version]
- Matsui, Y.; Onuma, N.; Nagasawa, H.; Higuchi, H.; Banno, S. Crystal structure control in trace element partition between crystal and magma. Tectonics 1977, 100, 315–324. [Google Scholar] [CrossRef]
- Francalanci, L.; Peccerillo, A.; Poli, G. Partition coefficients of minerals in potassium-rich rocks: Data from the Roman province. Geochem. J. 1987, 21, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dawson, J.B.; Hinton, R.W. Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Miner. Mag. 2003, 67, 921–930. [Google Scholar] [CrossRef]
- Fujimaki, H. Partition-coefficients of Hf, Zr, and REE between Zircon, Apatite and Liquid. Contrib. Miner. Pet. 1986, 94, 42–45. [Google Scholar] [CrossRef]
- GERM. Available online: https://earthref.org/KDD (accessed on 12 January 2021).
- Peccerillo, A.; Frezzotti, M.L. Magmatism, mantle evolution and geodynamics at the converging plate margins of Italy. J. Geol. Soc. 2015, 172, 407–427. [Google Scholar] [CrossRef] [Green Version]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Prelević, D.; Jacob, D.E.; Foley, S.F. Recycling plus: A new recipe for the formation of Alpine–Himalayan orogenic mantle lithosphere. Earth Planet. Sci. Lett. 2013, 362, 187–197. [Google Scholar] [CrossRef]
- Gerya, T.V.; Connolly, J.A.D.; Yuen, D.A.; Gorczyk, W.; Capel, A.M. Seismic implications of mantle wedge plumes. Phys. Earth Planet. Inter. 2006, 156, 59–74. [Google Scholar] [CrossRef]
- Castro, A.; Gerya, T.V. Magmatic implications of mantle wedge plumes: Experimental study. Lithos 2008, 103, 138–148. [Google Scholar] [CrossRef]
- Castro, A.; Gerya, T.; Garcia-Casco, A.; Fernandez, C.; Diaz Alvarado, J.; Moreno-Ventas, I.; Loew, I. Melting relations of MORB–sediment mélanges in underplated mantle wedge plumes. Implications for the origin of cordilleran-type batholiths. J. Pet. 2010, 51, 1267–1295. [Google Scholar] [CrossRef] [Green Version]
- Marschall, H.R.; Schumacher, J.C. Arc magmas sourced from mélange diapirs in subduction zones. Nat. Geosci. 2012, 5, 862–867. [Google Scholar] [CrossRef]
- Conticelli, S. The effect of crustal contamination on ultrapotassic magmas with lamproitic affinity: Mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, Central Italy. Chem. Geol. 1998, 149, 51–81. [Google Scholar] [CrossRef]
Plagioclase | ||||||||||||||||
CA3-1 | CA3-1 | CA4-8 | CA4-11 | CA5-1 | CA5-1 | CA5-6 | CA3-9 | CA3-15 | CA3-19 | CA4-5 | CA4-13 | CA5-3 | CA3-14 | CA4-6 | CA5-16 | |
Ph core | Ph rim | Ph core | Ph core | Ph core | Ph rim | Ph core | Micro core | Micro core | Micro core | Micro core | Micro core | Micro core | Gdm | Gdm | Gdm | |
SiO2 | 57.2 | 57.5 | 59.8 | 59 | 55.9 | 56.2 | 56.6 | 59.8 | 53 | 59.4 | 58.7 | 59.3 | 57 | 59.4 | 54.7 | 51.8 |
Al2O3 | 26.1 | 26.6 | 25.2 | 25.9 | 27.7 | 26.9 | 28 | 25.9 | 28.6 | 24.7 | 26.3 | 25.3 | 26.9 | 25.9 | 29 | 30.3 |
FeO | 0.11 | 0.11 | 0.17 | 0.07 | 0.65 | 0.16 | 0.15 | 0.13 | 0.20 | 0.19 | 0.19 | 0.12 | 0.07 | 0.77 | 0.66 | 0.14 |
CaO | 9.2 | 9.3 | 7.5 | 8 | 10.2 | 9.7 | 10 | 7.9 | 11.3 | 7.5 | 8.3 | 7.2 | 9.1 | 8.2 | 11.5 | 13.5 |
Na2O | 6.1 | 6.1 | 7.1 | 7 | 5.5 | 5.3 | 6.2 | 6.9 | 4.5 | 6.6 | 6.6 | 6.5 | 6 | 6.4 | 5.1 | 4 |
K2O | 0.54 | 0.68 | 0.76 | 0.66 | 0.43 | 1.10 | 0.54 | 0.78 | 0.42 | 1 | 0.89 | 1.02 | 0.58 | 0.71 | 0.38 | 0.27 |
Total | 99.2 | 100.3 | 100.5 | 100.7 | 100.4 | 99.2 | 101.5 | 101.5 | 98 | 99.4 | 100.9 | 99.4 | 99.7 | 101.5 | 101.4 | 100 |
An | 43.9 | 43.8 | 35.4 | 37.4 | 49.3 | 47 | 45.8 | 37.2 | 56.8 | 36.6 | 39.1 | 35.8 | 44.1 | 39.8 | 54.4 | 63.9 |
Ab | 53.1 | 52.3 | 60.3 | 58.9 | 48.3 | 46.7 | 51.2 | 58.5 | 40.6 | 57.7 | 55.9 | 58.2 | 52.6 | 56.2 | 43.5 | 34.6 |
Or | 3.1 | 3.8 | 4.3 | 3.7 | 2.4 | 6.3 | 2.9 | 4.3 | 2.5 | 5.8 | 5 | 6 | 3.3 | 4.1 | 2.1 | 1.5 |
Clinopyroxene | ||||||||||||||||
CA3-3 | CA3-3 | CA4-1 | CA4-1 | CA4-12 | CA4-17 | CA4-16 | CA5-9 | CA5-9 | CA4-4 | CA5-7 | CA5-11 | CA5-11 | CA3-5 | CA4-3 | CA5-15 | |
Ph core | Ph rim | Ph core | Ph rim | Ph core | Ph core | Ph core | Ph core | Ph rim | Micro core | Micro core | Micro core | Micro rim | Gdm | Gdm | Gdm | |
SiO2 | 52.3 | 52.6 | 51.7 | 52.4 | 53.3 | 53.9 | 53.1 | 53.2 | 54.8 | 54.4 | 54.4 | 51.6 | 53.3 | 53.2 | 53.2 | 54.3 |
TiO2 | 0.18 | 0.14 | 0.17 | - | 0.09 | 0.36 | 0.29 | 0.24 | 0.18 | 0.16 | 0.21 | 0.02 | 0.39 | 0.25 | 0.21 | 0.24 |
Al2O3 | 0.80 | 0.52 | 0.43 | 0.54 | 0.56 | 1.34 | 1.24 | 1.30 | 1.34 | 0.70 | 0.60 | 0.41 | 1.84 | 1.55 | 1.37 | 0.78 |
FeO | 11.6 | 11.9 | 12.7 | 12 | 11.6 | 4.3 | 4.8 | 3.4 | 4 | 4.7 | 3.8 | 11.8 | 5.4 | 5.9 | 7.7 | 5.6 |
MnO | 0.46 | 0.61 | 0.68 | 0.61 | 0.57 | 0.11 | 0.13 | 0.06 | 0.11 | 0.14 | 0.17 | 0.67 | 0.16 | 0.14 | 0.26 | 0.16 |
MgO | 13 | 12.4 | 12.4 | 12 | 12.9 | 17.3 | 16.8 | 17.7 | 18.2 | 18.7 | 19.1 | 11.9 | 17.2 | 17.1 | 17.6 | 18.7 |
CaO | 21.7 | 21.5 | 21.4 | 22.2 | 22.1 | 22.1 | 22.1 | 21.7 | 22.2 | 20.8 | 20.6 | 21.6 | 21.5 | 21.7 | 19.8 | 20 |
Na2O | 0.26 | 0.17 | 0.15 | 0.20 | 0.30 | 0.25 | 0.27 | 0.27 | 0.14 | 0.18 | 0.16 | 0.26 | 0.29 | 0.26 | 0.29 | 0.20 |
K2O | - | 0.02 | - | 0.02 | 0.01 | 0.01 | - | - | 0.07 | - | 0.02 | 0.04 | 0.01 | - | - | 0.01 |
Cr2O3 | 0.02 | 0.01 | - | - | 0.02 | 0.53 | 0.33 | 0.67 | 0.31 | 0.15 | 0.48 | 0.01 | 0.02 | 0.11 | 0.02 | - |
Total | 100.2 | 99.9 | 99.7 | 100 | 101.5 | 100.1 | 99.1 | 98.5 | 101.4 | 100 | 99.5 | 98.3 | 100.1 | 100.3 | 100.4 | 99.9 |
Wo | 44.1 | 44.3 | 43.5 | 45.6 | 44.5 | 44.5 | 44.7 | 44.3 | 43.7 | 41.1 | 41.1 | 45.1 | 43.1 | 43.2 | 39.2 | 39.6 |
En | 36.7 | 35.7 | 35.2 | 34.2 | 36.2 | 48.5 | 47.4 | 50.2 | 49.7 | 51.4 | 52.8 | 34.5 | 48.1 | 47.4 | 48.4 | 51.5 |
Fs | 19.2 | 20.1 | 21.3 | 20.2 | 19.2 | 7 | 7.8 | 5.5 | 6.4 | 7.5 | 6.1 | 20.4 | 8.7 | 9.5 | 12.4 | 8.9 |
Biotite | Amphibole | Opaque minerals | ||||||||||||||
CA3-6 | CA3-11 | CA3-20 | CA4-9 | CA5-8 | CA3-16 | CA5-5 | CA5-14 | |||||||||
Micro core | Ph core | Ph core | Ph core | Ph core | Ph core | Gdm | Gdm | |||||||||
SiO2 | 37.8 | 40.3 | 37 | 43.7 | 38.7 | 54.0 | - | 0.01 | ||||||||
TiO2 | 3 | 3.9 | 2.8 | 3.6 | 4.6 | 0.18 | 2.1 | 2 | ||||||||
Al2O3 | 14.7 | 17.8 | 14.5 | 14.7 | 14 | 1.3 | 0.83 | 2 | ||||||||
FeO | 8.5 | 5.2 | 10.7 | 7.2 | 8.2 | 3.4 | 85.5 | 89 | ||||||||
MnO | 0.12 | 0.04 | 0.10 | 0.02 | 0.05 | 0.09 | 0.27 | 0.14 | ||||||||
MgO | 21.6 | 18.4 | 20.5 | 17 | 19 | 18.5 | 0.85 | 0.30 | ||||||||
CaO | 0.12 | 0.06 | 0.14 | 0.14 | 0.09 | 20.64 | 0.35 | 0.07 | ||||||||
Na2O | 0.68 | 0.66 | 0.66 | 0.78 | 0.29 | 0.21 | - | - | ||||||||
K2O | 9.8 | 6.8 | 8.9 | 9.3 | 10.1 | 0.04 | 0.04 | 0.03 | ||||||||
Cr2O3 | - | 0.03 | 0.13 | 0.02 | 0.06 | 1.05 | 0.06 | 0.09 | ||||||||
Total | 96.3 | 93.1 | 95.4 | 96.4 | 95.1 | 99.4 | 90 | 93.6 |
Rock Sample | CA4 | CA2 | CA5 | CA1 | CA6 | CA7 | CA3 | CP25 | CP22 | CP50 | CP9 | CP28 | CP7 | CP6 | CP30 | CP14 | CP 101 | CP110 | CP54 | RZ05E | PP-180C | PP-180R | DG-27 | DG-28 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Locality | Capraia Island | Southern Tuscany | Elba Island | |||||||||||||||||||||
Laghetto | Laghetto | Laghetto | Laghetto | Laghetto | Laghetto | Laghetto | Laghetto | Laghetto | Monte Campanile | Monte Campanile | Porto | Zurletto | Zurletto | San Rocco-Piano | San Rocco-Piano | Capo Ferraione | Peraiola | Zenobito | San Vincenzo Enclave | Orano Porphyry | Orano Porphyry | Orano Dykes (Chiessi) | Orano Dykes (Chiessi) | |
Data Source | This Work | This Work | This Work | This Work | This Work | This Work | This Work | [28] | [28] | [28] | [28] | [28] | [28] | [28] | [28] | [28] | [9] | [9] | [9] | [16] | [15] | [15] | [35] | [35] |
SiO2 | 60.2 | 61.1 | 61.2 | 61.4 | 61.5 | 62.3 | 63.3 | 62.2 | 63 | 62 | 63.9 | 59.1 | 67.6 | 68.4 | 62.2 | 62.5 | 61.9 | 62.3 | 50.7 | 55.2 | 64.5 | 63.3 | 61.2 | 59.8 |
TiO2 | 0.66 | 0.65 | 0.67 | 0.64 | 0.62 | 0.61 | 0.65 | 0.67 | 0.67 | 0.97 | 0.94 | 0.81 | 0.51 | 0.56 | 0.71 | 0.73 | 0.69 | 0.68 | 1.65 | 0.82 | 0.62 | 0.69 | 0.67 | 0.67 |
Al2O3 | 14.8 | 16.1 | 15.4 | 16.7 | 15.6 | 15.7 | 16.1 | 16 | 16 | 16.5 | 16 | 16.5 | 13.6 | 14.3 | 15.8 | 15.8 | 15.3 | 15.2 | 15.5 | 15.6 | 16.1 | 15.2 | 14.6 | 14.5 |
Fe2O3 | 4.72 | 4.68 | 4.71 | 4.71 | 4.54 | 4.51 | 4.63 | 4.66 | 4.60 | 5.35 | 4.99 | 5.97 | 3.26 | 3.38 | 5.32 | 5.50 | 5.39 | 5.24 | 10.20 | 6.55 | 4.23 | 4.64 | 5.01 | 5.11 |
MnO | 0.09 | 0.07 | 0.08 | 0.06 | 0.07 | 0.05 | 0.07 | 0.09 | 0.07 | 0.06 | 0.06 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.07 | 0.13 | 0.05 | 0.06 | 0.06 | 0.11 | 0.10 |
MgO | 3.07 | 2.96 | 3.02 | 2.72 | 3.04 | 2.08 | 2.26 | 3.06 | 3.38 | 2.60 | 2.09 | 4.16 | 1.36 | 1.33 | 3.53 | 3.18 | 3.48 | 2.88 | 6.41 | 3.70 | 3.06 | 4.33 | 5.78 | 5.76 |
CaO | 5.06 | 4.29 | 4.91 | 4.50 | 4.89 | 4.56 | 4.46 | 4.92 | 4.32 | 4.34 | 3.74 | 5.66 | 2.42 | 2.72 | 5.35 | 5.14 | 5.48 | 4.59 | 7.92 | 6.26 | 2.37 | 3.49 | 4.11 | 4.68 |
Na2O | 3.09 | 3.01 | 3.27 | 3.06 | 3.18 | 3.32 | 3.35 | 3.27 | 3.17 | 3.53 | 3.61 | 3.20 | 3.82 | 3.10 | 2.88 | 2.87 | 3.14 | 3.14 | 2.83 | 2.27 | 3.27 | 2.92 | 3.28 | 3.20 |
K2O | 4.26 | 4.14 | 4.27 | 4.07 | 3.99 | 4.15 | 4.26 | 3.95 | 3.75 | 3.71 | 4 | 2.82 | 3.86 | 3.95 | 3.04 | 3.12 | 3.33 | 3.90 | 2.42 | 3.78 | 3.87 | 3.95 | 3.25 | 3.09 |
P2O5 | 0.31 | 0.27 | 0.33 | 0.30 | 0.28 | 0.29 | 0.26 | 0.29 | 0.29 | 0.36 | 0.34 | 0.26 | 0.14 | 0.18 | 0.23 | 0.25 | 0.18 | 0.29 | 0.48 | 0.61 | 0.28 | 0.27 | 0.25 | 0.24 |
LOI | 1.97 | 1.85 | 1.06 | 1.83 | 1.46 | 1.99 | 0.66 | 1.10 | 0.88 | 0.70 | 0.45 | 1.69 | 3.41 | 2.14 | 1.14 | 1.10 | 1.36 | 2.19 | 1.13 | 4.98 | 1.99 | 1.41 | 2.02 | 3.21 |
Total | 98.3 | 99.1 | 98.9 | 99.9 | 99.2 | 99.6 | 100 | 100.2 | 100.1 | 100.2 | 100.1 | 100.3 | 100.1 | 100.1 | 100.3 | 100.2 | 100.3 | 100.5 | 99.4 | 99.8 | 100.3 | 100.3 | 100.3 | 100.3 |
Sc | 14 | 14 | 15 | 14 | 14 | 13 | 13 | 13.2 | - | 13.8 | - | 17.4 | 6.8 | - | 16 | - | - | - | 23 | 19 | 11 | 12 | - | - |
V | 106 | 92 | 94 | 93 | 92 | 86 | 86 | 88 | 88 | 99 | 78 | 101 | 24 | 27 | 123 | 127 | 128 | 137 | 166 | - | 75 | 88 | 118 | 124 |
Cr | 120 | 120 | 100 | 110 | 120 | 120 | 100 | 100 | 123 | 94 | 56 | 243 | 20 | 34 | 144 | 168 | 177 | 132 | 400 | 310 | 86 | 144 | 248 | 243 |
Co | 16 | 14 | 15 | 15 | 14 | 10 | 13 | 8 | 14 | 11 | 11 | 18 | 8 | 7 | 14 | 16 | 11.9 | 15.2 | 30 | 19 | 12.8 | 16.3 | 18 | 19 |
Ni | 20 | 20 | 20 | 20 | 30 | 30 | < 20 | 25 | 26 | 22 | 10 | 84 | 8 | 9 | 13 | 13 | 29 | - | 69 | 90 | 43.1 | 83.7 | 101 | 112 |
Rb | 164 | 169 | 162 | 166 | 163 | 172 | 180 | 164 | 153 | 187 | 191 | 125 | 182 | 205 | 122 | 122 | 116 | 161 | 115 | 129 | 166 | 206 | 189 | 189 |
Sr | 1092 | 908 | 1164 | 1004 | 947 | 932 | 914 | 1110 | 1042 | 498 | 489 | 489 | 341 | 383 | 852 | 849 | 733 | 933 | 399 | 1634 | 920 | 1461 | 1563 | 1602 |
Y | 20.9 | 19.4 | 22.7 | 18.7 | 19.2 | 19.7 | 21.5 | 31 | 20 | 25 | 24 | 22 | 18 | 20 | 19 | 23 | 19.3 | 31 | 20 | 30 | 20 | 20.1 | 10 | 8 |
Zr | 227 | 247 | 245 | 236 | 222 | 252 | 255 | 206 | 223 | 259 | 232 | 207 | 170 | 176 | 198 | 197 | 185 | 234 | 221 | 226 | 192 | 213 | 219 | 217 |
Nb | 11.3 | 9.8 | 11.3 | 10.3 | 12.9 | 12.7 | 12.9 | 8 | 13 | 20 | 17 | 13 | 10 | 12 | 11 | 9 | 11.9 | 14.3 | 15 | 7 | 12.4 | 10.9 | 9 | 8 |
Cs | 11.7 | 11.5 | 11 | 11.5 | 12.1 | 13.4 | 12.3 | 12 | - | - | - | - | - | - | - | - | 9.2 | 15.2 | 4 | - | 12 | 30 | 14 | - |
Ba | 1537 | 1342 | 1574 | 1318 | 1259 | 1296 | 1278 | 1220 | 1367 | 828 | 820 | 738 | 563 | 650 | 866 | 853 | 711 | 1410 | 540 | 1510 | 970 | 1278 | 1528 | 1470 |
La | 129 | 121 | 145 | 119 | 114 | 119 | 107 | 127 | 128 | 68 | 63 | 68 | 44 | 49 | 57 | 59 | 58.5 | 165 | 29.3 | 181 | 101 | 120 | 146 | 148 |
Ce | 232 | 228 | 259 | 237 | 213 | 210 | 202 | 224 | 246 | 119 | 129 | 106 | 89 | 86 | 102 | 98 | 109 | 297 | 68.4 | 333 | 186 | 205 | 263 | 295 |
Nd | 85.2 | 81.3 | 96.8 | 79.5 | 77.7 | 76.9 | 74.6 | 103 | - | 49 | - | 43 | 34 | - | 39 | - | 43.6 | 105 | 51.9 | 160 | 80 | 94 | 107.3 | - |
Sm | 12.8 | 12.2 | 14.4 | 11.7 | 11.8 | 11.5 | 11.6 | 13.9 | - | 10.7 | - | - | 6.7 | - | 8.6 | - | 8.01 | 16.4 | 9.6 | 25 | 12.6 | 14.4 | 15.7 | - |
Eu | 2.38 | 2.32 | 2.72 | 2.33 | 2.33 | 2.3 | 2.3 | 2.62 | - | 1.63 | - | 1.67 | 1.05 | - | 1.63 | - | 1.76 | 3 | 2.09 | 4.88 | 2.05 | 2.76 | 3 | - |
Gd | 7.25 | 6.54 | 7.93 | 6.48 | 6.5 | 6.36 | 6.65 | 8.1 | - | - | - | - | - | - | - | - | 5.3 | 9.5 | 6.2 | 14 | 7.89 | 9.38 | 10.3 | - |
Tb | 0.86 | 0.79 | 0.89 | 0.71 | 0.74 | 0.76 | 0.83 | 1.1 | - | 0.82 | - | 0.72 | 0.57 | - | 0.71 | - | 0.77 | 1.24 | 1 | 1.5 | 0.88 | 0.92 | 1 | - |
Dy | 4.03 | 3.64 | 4.23 | 3.59 | 3.77 | 3.63 | 4.05 | 4.9 | - | - | - | - | - | - | - | - | 3.6 | 5.6 | 4.9 | 6.9 | 4.25 | 4.36 | 4.9 | - |
Ho | 0.67 | 0.62 | 0.71 | 0.61 | 0.6 | 0.6 | 0.7 | 0.91 | - | - | - | - | - | - | - | - | 0.7 | 1.01 | 0.99 | 1.1 | 0.74 | 0.73 | 0.6 | - |
Er | 1.92 | 1.77 | 2.12 | 1.79 | 1.72 | 1.79 | 1.94 | 2.3 | - | - | - | - | - | - | - | - | 2.05 | 2.85 | 2.7 | 2.6 | 1.83 | 1.69 | 1.7 | - |
Tm | 0.24 | 0.23 | 0.29 | 0.26 | 0.23 | 0.25 | 0.27 | 0.30 | - | - | - | - | - | - | - | - | 0.29 | 0.40 | 0.40 | - | 0.26 | 0.24 | 0.20 | - |
Yb | 1.68 | 1.58 | 1.82 | 1.56 | 1.50 | 1.53 | 1.84 | 2.30 | - | 2.10 | - | 2 | 1.80 | - | 1.80 | - | 1.84 | 2.49 | 2.30 | 2.10 | 1.67 | 1.37 | 1.20 | - |
Lu | 0.24 | 0.25 | 0.29 | 0.22 | 0.24 | 0.23 | 0.28 | 0.35 | - | 0.35 | - | 0.36 | 0.28 | - | 0.23 | - | 0.28 | 0.36 | 0.35 | 0.30 | 0.22 | 0.18 | 0.20 | - |
Hf | 5.6 | 5.5 | 6.2 | 5.7 | 5.6 | 5.9 | 5.9 | 5.3 | - | 7.3 | - | 4.6 | 5.9 | - | 5 | - | 5.4 | 6.3 | 5.6 | 6.5 | - | - | - | - |
Ta | 1.07 | 1 | 0.97 | 1 | 1.03 | 1.11 | 1.17 | 1 | - | 1.8 | - | 1.3 | 1.5 | - | 1.08 | - | 0.9 | 1.11 | 1.2 | 1.1 | 1.54 | 1.3 | - | - |
Pb | 72 | 74 | 78 | 77 | 78 | 72 | 70 | 53 | 59 | 41 | 42 | 38 | 51 | 52 | 48 | 46 | 61 | 82 | 12 | - | 36 | 101 | 77 | 61 |
Th | 51.5 | 53.7 | 56.8 | 52.5 | 50 | 52.5 | 48.3 | 44 | 46 | 44 | 43 | 26 | 34 | 34 | 25 | 23 | 23.1 | 49.4 | 24 | 51.5 | 37 | 35 | 43 | 51 |
U | 10.5 | 10.4 | 10.6 | 10.9 | 10.5 | 11.8 | 9.9 | - | - | - | - | - | - | - | - | - | 6.4 | 11.7 | 3.8 | - | 11 | 9.9 | - | - |
87Sr/86Sr | 0.709642 | - | 0.710009 | - | - | - | 0.709553 | 0.710260 | 0.707314 | 0.709628 | 0.709811 | 0.709175 | - | - | 0.708782 | 0.707933 | 0.708719 | 0.710213 | 0.708135 | - | - | 0.711500 | 0.711348 | - |
143Nd/144Nd | 0.512343 | - | 0.512331 | - | - | - | 0.512339 | 0.512243 | - | - | - | - | - | - | - | - | 0.512346 | 0.512239 | 0.512254 | - | - | 0.512270 | 0.512330 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santo, A.P. A New Magma Type in the Continental Collision Zone. The Case of Capraia Island (Tuscany, Italy). Geosciences 2021, 11, 104. https://doi.org/10.3390/geosciences11020104
Santo AP. A New Magma Type in the Continental Collision Zone. The Case of Capraia Island (Tuscany, Italy). Geosciences. 2021; 11(2):104. https://doi.org/10.3390/geosciences11020104
Chicago/Turabian StyleSanto, Alba Patrizia. 2021. "A New Magma Type in the Continental Collision Zone. The Case of Capraia Island (Tuscany, Italy)" Geosciences 11, no. 2: 104. https://doi.org/10.3390/geosciences11020104
APA StyleSanto, A. P. (2021). A New Magma Type in the Continental Collision Zone. The Case of Capraia Island (Tuscany, Italy). Geosciences, 11(2), 104. https://doi.org/10.3390/geosciences11020104