Analytical Fragility Curves of Pile Foundations with Soil-Structure Interaction (SSI)
Abstract
:1. Introduction
2. Methodology
3. Finite Elements Models
4. Results
4.1. PL10
4.2. PL5 and PL20
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prakash, S.; Sharma, H.D. Pile Foundation in Engineering Practice; Wiley-Interscience: New York, NY, USA, 1990. [Google Scholar]
- Reese, L.C.; Van Impe, W.E. Single Piles and Pile Groups under Lateral Loading; Balkema: Rotterdam, The Netherland, 2001. [Google Scholar]
- Song, S.T.; Chai, Y.; Hale, T.H. Analytical model for ductility assessment of fixed-head concrete piles. J. Struct. Eng. 2005, 131, 1051–1059. [Google Scholar] [CrossRef]
- Earthquake Engineering Research Center (EERC). Geotechnical Reconnaissance of the Effect of the January 17, 1995 Hyogoken-Nambu Earthquake, Japan; Report No. UCB/EERC-95/01; University of California: Berkeley, CA, USA, 1995. [Google Scholar]
- Earthquake Engineering Research Institute (EERI). Koceali, Turkey Earthquake of August 17, 1999; Reconnaissance Report; Earthquake Spectra: Oakland, CA, USA, 2000. [Google Scholar]
- Makris, N.; Badoni, D.; Delis, E.; Gazetas, G. Prediction of Observed Bridge Response with Soil-Pile-Structure Interaction. J. Struct. Eng. 1994, 120, 2992–3011. [Google Scholar] [CrossRef]
- Applied Technology Council (ATC). Improved Seismic Design Criteria for California Bridges: Provisional Recommendations, ATC-32; Applied Technology Council: Redwood City, CA, USA, 1996. [Google Scholar]
- New Zealand Transport Agency (NZTA). Bridge Manual; NZ Transport Agency: Willington, New Zealand, 2013.
- Horikoshi, K.; Matsumoto, T.; Hashizume, Y.; Watanabe, T. Performance of piled raft foundations subjected to dynamic loading. Int. J. Phys. Model. Geotech. 2003, 3, 51–62. [Google Scholar] [CrossRef]
- Baziar, M.H.; Rafiee, F.; Saeedi Azizkandi, A.; Lee, C.J. Effect of super-structure radial frequency on the seismic behavior of pile-raft foundation using physical modeling. Soil Dyn. Earthq. Eng. 2018, 104, 196–209. [Google Scholar] [CrossRef]
- Matsumoto, T.; Fukumura, K.; Pastsakorn, K.; Horikoshi, K.; Oki, A. Experimental and analytical study on behaviour of model piled rafts in sand subjected to horizontal and moment loading. Int. J. Phys. Model. Geotech. 2004, 4, 1–19. [Google Scholar] [CrossRef]
- Roy, J.; Kumarc, A.; Choudhurya, D. Natural frequencies of piled raft foundation including superstructure effect. Soil Dyn. Earthq. Eng. 2018, 112, 69–75. [Google Scholar] [CrossRef]
- Gazetas, G.; Dobry, R. Horizontal response of piles in layered soils. J. Geotech. Eng. 1984, 110, 20–40. [Google Scholar] [CrossRef]
- Budek, A.M.; Benzoni, G. Obtaining ductile performance from precast, prestressed concrete piles. PCI J. 2009, 54, 64–80. [Google Scholar] [CrossRef]
- Budek, A.M.; Priestley, M.J.N.; Benzoni, G. Inelastic Seismic Response of Bridge Drilled-Shaft RC Pile/Columns. J. Struct. Eng. 2000, 126, 510–517. [Google Scholar] [CrossRef]
- Chai, Y.H.; Hutchinson, T.C. Flexural strength and ductility of extended pile-shafts II: Experimental study. J. Struct. Eng. 2002, 128, 595–602. [Google Scholar] [CrossRef]
- Hutchinson, T.C.; Boulanger, R.W.; Chai, Y.H.; Idriss, I.M. Inelastic Seismic Response of Extended Pile-Shaft-Supported Bridge Structures. Earthq. Spectra 2004, 20, 1057–1080. [Google Scholar] [CrossRef]
- Chiou, J.S.; Tsai, Y.C.; Chen, C.H. Simple estimation for ductility capacity of a fixed-head pile in cohesive soils. Can. Geotech. J. 2011, 48, 1449–1460. [Google Scholar] [CrossRef]
- Chiou, J.S.; Tsai, Y.C.; Chen, C.H. Investigating influencing factors on the ductility capacity of a fixed-head reinforced concrete pile in homogeneous clay. J. Mech. 2012, 28, 489–498. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhury, D.; Katzenbach, A. Effect of earthquake on combined pile-raft foundation. Int. J. Geomech. 2016, 16, 04016013. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhury, D. Load sharing mechanism of combined pile-raft foundation under seismic loads. Geotech. Eng. 2017, 48, 95–101. [Google Scholar]
- Kumar, A.; Choudhury, D.; Shukla, J.; Shah, D.L. Seismic design of pile foundation for oil tank by using PLAXIS3D. Disaster Adv. 2015, 8, 33–42. [Google Scholar]
- Arulmoli, K.; Martin, G.R.; Gasparro, M.G.; Shahrestani, S.; Buzzoni, G. Design of pile foundations for liquefaction-induced lateral spread displacements. In Geotechnical Engineering for Transportation Projects; Geo-Trans 2004: Los Angeles, CA, USA, 2004; pp. 1673–1681. [Google Scholar] [CrossRef]
- Shafieezadeh, A.; DesRoches, R.; Rix, G.J.; Werner, S.D. Seismic performance of pile-supported wharf structures considering soil-structure interaction in liquefied soil. Earthq. Spectra 2012, 28, 729–757. [Google Scholar] [CrossRef]
- Chiaramonte, M.M.; Arduino, P.; Lehman, D.E.; Roeder, C.W. Seismic analyses of conventional and improved marginal wharves. Earthq. Eng. Struct. Dyn. 2013, 42, 1435–1450. [Google Scholar] [CrossRef]
- Donahue, M.J.; Dickenson, S.E.; Miller, T.H.; Yim, S.C. Comparison of 3D modeling to recorded seismic response for a pile supported wharf. In Proceedings of the Ports Conference 2004, Houston, TX, USA, 23–26 May 2004; pp. 1–10. [Google Scholar]
- Doran, B.; Shen, J.H.; Akbas, B. Seismic evaluation of existing wharf structures subjected to earthquake excitation: Case study. Earthq. Spectra 2015, 31, 1177–1194. [Google Scholar] [CrossRef]
- Elgamal, A.; Lu, J.; Forcellini, D. Mitigation of liquefaction-induced lateral deformation in a sloping stratum: Three-dimensional Numerical Simulation. J. Geotech. Geoenviron. Eng. 2009, 135, 1672–1682. [Google Scholar] [CrossRef]
- Su, L.; Lu, J.; Elgamal, A.; Arumoli, A.K. Seismic performance of a pile-supported wharf: Three-dimensional finite element simulation. Soil Dyn. Earthq. Eng. 2017, 95, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Song, S.T.; Wang, C.Y.; Hu, T.F. Displacement Ductility Limits for Pile Foundations in Cohesionless Soils. J. Earthq. Eng. 2017, 22, 595–629. [Google Scholar] [CrossRef]
- Badry, P.; Satyam, N. An efficient approach for assessing the seismic soil structure interaction effect for the asymmetrical pile group. Innov. Infrastruct. Solut. 2016, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Okada, T.; Fujita, K.; Takewaki, I. Robustness evaluation of seismic pile response considering uncertainty mechanism of soil properties. Innov. Infrastruct. Solut. 2016, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, R.; Roy, N.; Serawat, A. A three dimensional comparative study of seismic behaviour of vertical and batter pile groups. Geotech. Geol. Eng. 2017, 36, 763–781. [Google Scholar] [CrossRef]
- Yuan, H.; Li, Y. Downdrag force analysis for seismic soil–pile–structure interaction. Geotech. Geol. Eng. 2017, 35, 493–501. [Google Scholar] [CrossRef]
- Azizkandi, A.S.; Baziar, M.H.; Yeznabad, A.F. 3D dynamic finite element analyses and 1 g shaking table tests on seismic performance of connected and nonconnected piled raft foundations. KSCE J. Civ. Eng. 2017, 22, 1750–1762. [Google Scholar] [CrossRef]
- Visuvasam, J.; Chandrasekaran, S.S. Effect of soil–pile–structure interaction on seismic behaviour of RC building frames. Innov. Infrastruct. Solut. 2019, 4, 45. [Google Scholar] [CrossRef]
- Forcellini, D. A Resilience-Based Methodology to Assess Soil Structure Interaction on a Benchmark Bridge. Infrastructures 2020, 5, 90. [Google Scholar] [CrossRef]
- Forcellini, D. Probabilistic-based assessment of Liquefaction-Induced damage with analytical fragility curves. Geosciences 2020, 10, 315. [Google Scholar] [CrossRef]
- Mina, D.; Forcellini, D.; Karampour, H. Analytical fragility curves for assessment of the seismic vulnerability of HP/HT unburied subsea pipelines. Soil Dyn. Earthq. Eng. 2020, 137, 106308. [Google Scholar] [CrossRef]
- Forcellini, D. Analytical fragility curves of shallow-founded structures subjected to Soil-Structure Interaction (SSI) effects. Soil Dyn. Earthq. Eng. 2020, 141, 106487. [Google Scholar] [CrossRef]
- Yang, C.S.W.; Desroches, R.; Rix, G.J. Numerical fragility analysis of vertical-pile-supported wharves in the western United States. J. Earthq. Eng. 2012, 16, 579–594. [Google Scholar] [CrossRef]
- Mitropoulou, C.C.; Kostopanagiotis, C.; Kopanos, M.; Ioakim, D.; Lagaros, N.D. Infuence of soil–structure interaction on fragility assessment of building structures. Structures 2016, 6, 85–98. [Google Scholar] [CrossRef]
- Ko, Y.; Yang, H. Deriving seismic fragility curves for sheet-pile wharves using finite element analysis. Soil Dyn. Earthq. Eng. 2019, 123, 265–277. [Google Scholar] [CrossRef]
- Cavalieri, F.; Correia, A.; Crowley, H.; Pinho, R. Seismic fragility analysis of URM buildings founded on piles: Influence of dynamic soil–structure interaction models. Bull. Earthq. Eng. 2020, 18, 4127–4156. [Google Scholar] [CrossRef]
- Finn, W. A study of piles during earthquakes: Issues of design and analysis. Bull. Earthq. Eng. 2005, 3, 141–234. [Google Scholar] [CrossRef]
- Forcellini, D. Cost Assessment of isolation technique applied to a benchmark bridge with soil structure interaction. Bull. Earthq. Eng. 2017, 15, 51–69. [Google Scholar] [CrossRef]
- CEN, European Committee for Standardisation TC250/SC8/. Eurocode 8: Design Provisions for Earthquake Resistance of Structures; Part 1.1: General rules, seismic actions and rules for buildings, PrEN1998-1; European Committee for Standardisation: Bruxelles, Belgium, 2003. [Google Scholar]
- Lu, J.; Elgamal, A.; Yang, Z. OpenSeesPL: 3D Lateral Pile-Ground Interaction, User Manual, Beta 1.0. 2011. Available online: http://soilquake.net/openseespl/ (accessed on 2 February 2021).
- Law, H.K.; Lam, I.P. Application of periodic boundary for large pile group. J. Geotech. Geoenviron. Eng. 2001, 127, 889–892. [Google Scholar] [CrossRef]
- Mazzoni, S.; McKenna, F.; Scott, M.H.; Fenves, G.L. Open System for Earthquake Engineering Simulation, User Command-Language Manual; OpenSees Version 2.0.; Pacific Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 2009; Available online: http://opensees.berkeley.edu/OpenSees/manuals/usermanual (accessed on 2 February 2021).
- Forcellini, D. Soil-structure interaction analyses of shallow-founded structures on a potential-liquefiable soil deposit. Soil Dyn. Earthq. Eng. 2020, 133, 106108. [Google Scholar] [CrossRef]
- Forcellini, D. Numerical simulations of liquefaction on an ordinary building during Italian (20 May 2012) earthquake. Bull. Earthq. Eng. 2019, 17, 4797–4823. [Google Scholar] [CrossRef]
- Kuhlemeyer, R.L.; Lysmer, J. Finite element method accuracy for wave propagation problems. J. Soil Mech. Found. Div. 1973, 99, 421–427. [Google Scholar]
- Sharma, N.; Dasgupta, K.; Dey, A. Optimum lateral extent of soil domain for dynamic SSI analysis of RC framed buildings on pile foundations. Front. Struct. Civ. Eng. 2020, 14, 62–81. [Google Scholar] [CrossRef]
- Lysmer, J.; Kuhlemeyer, R.L. Finite dynamic model for in finite media. J. Eng. Mech. Div. 1969, 95, 859–878. [Google Scholar]
- Prevost, J.H. A simple plasticity theory for frictional cohesionless soils. Int. J. Soil Dyn. Earthq. Eng. 1985, 4, 9–17. [Google Scholar] [CrossRef]
D (m) | L (m) | L/D | Ag (m2) | I (m4) | P(MPa) | |
---|---|---|---|---|---|---|
PL5 | 2.0 | 10.0 | 5 | 3.142 | 0.785 | 2.03 |
PL10 | 1.0 | 10.0 | 10 | 0.785 | 0.049 | 8.12 |
PL20 | 0.5 | 10.0 | 20 | 0.196 | 0.003 | 32.50 |
Stiff | Medium | Soft | |
---|---|---|---|
Mass density (kN/m3) | 20 | 19 | 17 |
Shear Modulus (kPa) | 1.0 × 105 | 7.7 × 104 | 5.8 × 104 |
Bulk Modulus (kPa) | 3.1 × 105 | 2.2 × 105 | 1.75 × 105 |
Friction Angle (°) | 37 | 33 | 29 |
Num. Yield Surface | 20 | 20 | 20 |
Stiff | Medium | Soft | |
---|---|---|---|
PL5 | 0.875 | 0.896 | 0.719 |
PL10 | 0.559 | 0.591 | 0.547 |
PL20 | 0.872 | 0.871 | 0.709 |
Parameter | LS1 | LS2 | LS3 |
---|---|---|---|
µ | 0.173 g | 0.180 g | - |
β | 0.634 | 0.654 | - |
Parameter | LS1 | LS2 | LS3 |
---|---|---|---|
µ | 0.154 g | 0.165 g | 0.180 g |
β | 0.577 | 0.606 | 0.640 |
Parameter | LS1 | LS2 | LS3 |
---|---|---|---|
µ | 0.109 g | 0.146 g | 0.165 g |
β | 0.509 | 0.576 | 0.609 |
PE | LS1 | LS2 | LS3 |
---|---|---|---|
STIFF | 0.560 | 0.539 | - |
MEDIUM | 0.666 | 0.590 | 0.552 |
SOFT | 0.894 | 0.705 | 0.633 |
PE | PL5 | PL10 | PL20 |
---|---|---|---|
MEDIUM | 0.767 | 0.742 | 0.675 |
SOFT | 0.888 | 0.836 | 0.764 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forcellini, D. Analytical Fragility Curves of Pile Foundations with Soil-Structure Interaction (SSI). Geosciences 2021, 11, 66. https://doi.org/10.3390/geosciences11020066
Forcellini D. Analytical Fragility Curves of Pile Foundations with Soil-Structure Interaction (SSI). Geosciences. 2021; 11(2):66. https://doi.org/10.3390/geosciences11020066
Chicago/Turabian StyleForcellini, Davide. 2021. "Analytical Fragility Curves of Pile Foundations with Soil-Structure Interaction (SSI)" Geosciences 11, no. 2: 66. https://doi.org/10.3390/geosciences11020066
APA StyleForcellini, D. (2021). Analytical Fragility Curves of Pile Foundations with Soil-Structure Interaction (SSI). Geosciences, 11(2), 66. https://doi.org/10.3390/geosciences11020066