The 2011 Tohoku Tsunami from the Sky: A Review on the Evolution of Artificial Intelligence Methods for Damage Assessment
Abstract
:1. Introduction
2. Remote Sensing Data: A Complex Source Material for Tsunami Damage Interpretation
- Regular red, green and blue (RGB) sensors typically used by drones or aircraft to take pictures;
- Visible and near Infared (VNIR) sensors produce RGB images with an extra near infrared channel;
- Panchromatic (PAN) images include the four channels from VNIR images and extra channels that combine different colors. In the case of the Worldview missions, the four extra channels are: red edge (between red and near-infrared), coastal (between blue and ultra-violet), yellow (between green and red), and near-IR2 (a second near-infrared channel with a higher wavelength);
- Polarimetric L-band Synthetic Aperture Radar (PoLSAR).
- Thermal Infrared (TIR).
2.1. Optical Images as Source Data
2.2. Synthetic Aperture Radar Images as Source Data
2.3. Aerial Images and LiDAR
3. Machine Learning and Deep Learning Applied to Images of the 2011 Tohoku Tsunami
- Supervised and unsupervised methods;
- Methods that need images from before and after the disaster (including change-detection approaches), versus methods that only use images from after the tsunami;
- Regular learning approaches and deep-learning approaches
- The first one is the intuitive idea of change detection between the two images by observing their differences. This well-known change-detection process is widely used in remote sensing [45]. In the case of tsunamis, it can be used as a damage assessment method on its own by simply computing changes in various indexes and textures. However, this can also be a pre-processing step to exclude areas of the images without interesting changes, so that the damage-assessment mapping algorithm can focus on the most critical area;
- The second reason consists of concatenating the two images and to using the newly created multi-channel image as a single input for an artificial intelligence algorithm. This methods enables the production of higher-quality features and textures;
- Finally, the pre-disaster images can be favored to map the pre-existing buildings (which may not be in the after images), and a heavier weight can be given to the post-disaster image to categorize the damage.
3.1. Classes of Interest and Metrics
3.2. Approaches Based on Regular Machine Learning
3.2.1. AI Based on Supervised Learning
3.2.2. AI Based on Semi-Supervised Learning
3.2.3. AI Based on Unsupervised Learning
3.3. Approaches Based on Deep Learning
3.3.1. Supervised Deep Learning
- In the case when only post-disaster images are available, they use a simple CNN with the following architecture: convolution-pooling-convolution-pooling-convolution-convolution, followed by two fully connected layers for class prediction;
- In the case where both pre- and post-disaster images are available, they use a Siamese network with the same basis but two convolutional entry branches before the fully connected layers;
- A second scenario is proposed when pre- and post-disaster images are available: using the regular non-Siamese network with a concatenated six-channel input image.
3.3.2. Unsupervised Deep Learning
3.4. Results Comparison and Comments
4. Discussion and Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AE | Autoencoder |
AI | Artificial Intelligence |
ALOS | Advanced Land Observing Satellite |
CNN | Convolutional Neural Networks |
DEC | Deep Embedded Clustering |
GLCM | Gray Level Co-occurrence Matrix |
IHF | Imagery, Hazard, and Fragility function |
JAXA | Japan Aerospace eXploration Agency |
LiDAR | Light Detection And Ranging |
MOD | Moderate Damages |
NC | Not Collapsed |
NDVI | Normalized Difference Vegetation Index |
NOD | No Damages |
OA | Overall Accuracy |
PoLSAR | Polarimetric L-band Synthetic Aperture Radar |
RGB | Red, Green, Blue |
SAR | Synthetic Aperture Radar |
SED | Serious(ly) Damage(d) |
SLD | Slight(ly) Damage(d) |
SVM | Support Vector Machine(s) |
TIR | Thermal InfraRed |
VNIR | Visible and near InfaRed |
WA | Washed away |
WRN | Wide Residual Network |
References
- Mori, N.; Takahashi, T.; Yasuda, T.; Yanagisawa, H. Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Police Counter Measures and Damage Situation Associated with 2011 Tohoku District off the Pacific Ocean Earthquake. 2020. Available online: https://www.npa.go.jp/news/other/earthquake2011/pdf/higaijokyo_e.pdf (accessed on 1 January 2021).
- Ohta, Y.; Murakami, H.; Watoh, Y.; Koyama, M. A model for evaluating life span characteristics of entrapped occupants by an earthquake. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Stramondo, S. The Tohoku–Oki Earthquake: A Summary of Scientific Outcomes From Remote Sensing. IEEE Geosci. Remote Sens. Lett. 2013, 10, 895–897. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Alonso, A.; Utanda, Á.; Aulló-Maestro, M.E.; Palacios, M. Earth Observation Actionable Information Supporting Disaster Risk Reduction Efforts in a Sustainable Development Framework. Remote Sens. 2019, 11, 49. [Google Scholar] [CrossRef] [Green Version]
- Koshimura, S.; Moya, L.; Mas, E.; Bai, Y. Tsunami Damage Detection with Remote Sensing: A Review. Geosciences 2020, 10, 177. [Google Scholar] [CrossRef]
- Liu, W.; Yamazaki, F.; Gokon, H.; ichi Koshimura, S. Extraction of Tsunami-Flooded Areas and Damaged Buildings in the 2011 Tohoku-Oki Earthquake from TerraSAR-X Intensity Images. Earthq. Spectra 2013, 29, 183–200. [Google Scholar] [CrossRef] [Green Version]
- Gokon, H.; Post, J.; Stein, E.; Martinis, S.; Twele, A.; Mück, M.; Geiß, C.; Koshimura, S.; Matsuoka, M. A Method for Detecting Buildings Destroyed by the 2011 Tohoku Earthquake and Tsunami Using Multitemporal TerraSAR-X Data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1277–1281. [Google Scholar] [CrossRef]
- Wieland, M.; Liu, W.; Yamazaki, F. Learning Change from Synthetic Aperture Radar Images: Performance Evaluation of a Support Vector Machine to Detect Earthquake and Tsunami-Induced Changes. Remote Sens. 2016, 8, 792. [Google Scholar] [CrossRef] [Green Version]
- Endo, Y.; Adriano, B.; Mas, E.; Koshimura, S. New Insights into Multiclass Damage Classification of Tsunami-Induced Building Damage from SAR Images. Remote Sens. 2018, 10, 2059. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Gao, C.; Singh, S.; Koch, M.; Adriano, B.; Mas, E.; Koshimura, S. A Framework of Rapid Regional Tsunami Damage Recognition From Post-event TerraSAR-X Imagery Using Deep Neural Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Moya, L.; Zakeri, H.; Yamazaki, F.; Liu, W.; Mas, E.; Koshimura, S. 3D gray level co-occurrence matrix and its application to identifying collapsed buildings. ISPRS J. Photogramm. Remote Sens. 2019, 149, 14–28. [Google Scholar] [CrossRef]
- Gokon, H.; Koshimura, S.; Meguro, K. Verification of a Method for Estimating Building Damage in Extensive Tsunami Affected Areas Using L-Band SAR Data. J. Disaster Res. 2017, 12, 251–258. [Google Scholar] [CrossRef]
- Moya, L.; Perez, L.R.M.; Mas, E.; Adriano, B.; Koshimura, S.; Yamazaki, F. Novel Unsupervised Classification of Collapsed Buildings Using Satellite Imagery, Hazard Scenarios and Fragility Functions. Remote Sens. 2018, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Moya, L.; Geiß, C.; Hashimoto, M.; Mas, E.; Koshimura, S.; Strunz, G. Disaster Intensity-Based Selection of Training Samples for Remote Sensing Building Damage Classification. IEEE Trans. Geosci. Remote Sens. 2021, 1–17. [Google Scholar] [CrossRef]
- Minghelli, A.; Spagnoli, J.; Lei, M.; Chami, M.; Charmasson, S. Shoreline Extraction from WorldView2 Satellite Data in the Presence of Foam Pixels Using Multispectral Classification Method. Remote Sens. 2020, 12, 2664. [Google Scholar] [CrossRef]
- Bai, Y.; Mas, E.; Koshimura, S. Towards Operational Satellite-Based Damage-Mapping Using U-Net Convolutional Network: A Case Study of 2011 Tohoku Earthquake-Tsunami. Remote Sens. 2018, 10, 1626. [Google Scholar] [CrossRef] [Green Version]
- Chini, M.; Pulvirenti, L.; Pierdicca, N. Analysis and Interpretation of the COSMO-SkyMed Observations of the 2011 Japan Tsunami. IEEE Geosci. Remote Sens. Lett. 2012, 9, 467–471. [Google Scholar] [CrossRef]
- Yonezawa, C.; Shibata, J. COSMO-SkyMed data observation of reconstruction process in agricultural fields damaged by the March 11 2011 tsunami. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2074–2077. [Google Scholar] [CrossRef]
- Rao, G.; Lin, A. Distribution of inundation by the great tsunami of the 2011 Mw 9.0 earthquake off the Pacific coast of Tohoku (Japan), as revealed by ALOS imagery data. Int. J. Remote Sens. 2011, 32, 7073–7086. [Google Scholar] [CrossRef]
- Koshimura, S.; Hayashi, S.; Gokon, H. The impact of the 2011 Tohoku earthquake tsunami disaster and implications to the reconstruction. Soils Found. 2014, 54, 560–572. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Chen, S.; Satake, M. Polarimetric SAR Analysis of Tsunami Damage Following the March 11, 2011 East Japan Earthquake. Proc. IEEE 2012, 100, 2861–2875. [Google Scholar] [CrossRef]
- Park, S.E.; Yamaguchi, Y.; jin Kim, D. Polarimetric SAR remote sensing of the 2011 Tohoku earthquake using ALOS/PALSAR. Remote Sens. Environ. 2013, 132, 212–220. [Google Scholar] [CrossRef]
- Ji, Y.; Sumantyo, J.T.S.; Chua, M.Y.; Waqar, M.M. Earthquake/Tsunami Damage Assessment for Urban Areas Using Post-Event PolSAR Data. Remote Sens. 2018, 10, 1088. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Sumantyo, J.T.S.; Chua, M.Y.; Waqar, M.M. Earthquake/Tsunami Damage Level Mapping of Urban Areas Using Full Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2296–2309. [Google Scholar] [CrossRef]
- Chini, M.; Piscini, A.; Cinti, F.R.; Amici, S.; Nappi, R.; DeMartini, P.M. The 2011 Tohoku (Japan) Tsunami Inundation and Liquefaction Investigated Through Optical, Thermal, and SAR Data. IEEE Geosci. Remote Sens. Lett. 2013, 10, 347–351. [Google Scholar] [CrossRef]
- Sublime, J.; Kalinicheva, E. Automatic Post-Disaster Damage Mapping Using Deep-Learning Techniques for Change Detection: Case Study of the Tohoku Tsunami. Remote Sens. 2019, 11, 1123. [Google Scholar] [CrossRef] [Green Version]
- FUKUOKA, T.; KOSHIMURA, S. Three Dimensional Mapping of Tsunami Debris with Aerial Photos and LiDAR Data. J. Jpn. Soc. Civil Eng. Ser. B2 Coast. Eng. 2013, 69. [Google Scholar] [CrossRef]
- Koshimura, S.; Fukuoka, T. Remote Sensing Approach for Mapping and Monitoring Tsunami Debris. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4829–4832. [Google Scholar] [CrossRef]
- Gokon, H.; Koshimura, S. Mapping of Building Damage of the 2011 Tohoku Earthquake Tsunami in Miyagi Prefecture. Coast. Eng. J. 2012, 54. [Google Scholar] [CrossRef]
- Fujita, A.; Sakurada, K.; Imaizumi, T.; Ito, R.; Hikosaka, S.; Nakamura, R. Damage detection from aerial images via convolutional neural networks. In Proceedings of the 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; pp. 5–8. [Google Scholar] [CrossRef]
- Pal, N.R.; Pal, S.K. A review on image segmentation techniques. Pattern Recognit. 1993, 26, 1277–1294. [Google Scholar] [CrossRef]
- LeCun, Y. Deep learning & convolutional networks. In Proceedings of the 2015 IEEE Hot Chips 27 Symposium (HCS), Cupertino, CA, USA, 22–25 August 2015; pp. 1–95. [Google Scholar] [CrossRef]
- Ranzato, M.; Hinton, G.E.; LeCun, Y. Guest Editorial: Deep Learning. Int. J. Comput. Vis. 2015, 113, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Shimada, M.; Tadono, T.; Rosenqvist, A. Advanced Land Observing Satellite (ALOS) and Monitoring Global Environmental Change. Proc. IEEE 2010, 98, 780–799. [Google Scholar] [CrossRef]
- Wang, K.; Franklin, S.E.; Guo, X.; He, Y.; McDermid, G.J. Problems in remote sensing of landscapes and habitats. Prog. Phys. Geogr. Earth Environ. 2009, 33, 747–768. [Google Scholar] [CrossRef] [Green Version]
- Gokon, H. Estimation of Tsunami-Induced Damage Using Synthetic Aperture Radar. Ph.D. Thesis, Tohoku University, Sendai, Japan, 2015. [Google Scholar]
- Simard, M.; Grandi, G.D.; Thomson, K.P.B.; Bénié, G.B. Analysis of speckle noise contribution on wavelet decomposition of SAR images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1953–1962. [Google Scholar] [CrossRef]
- Sivaranjani, R.; Roomi, S.M.M.; Senthilarasi, M. Speckle noise removal in SAR images using Multi-Objective PSO (MOPSO) algorithm. Appl. Soft Comput. 2019, 76, 671–681. [Google Scholar] [CrossRef]
- Shiro, E. A new method of high resolution SAR image synthesis reducing speckle noise. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017, Fort Worth, TX, USA, 23–28 July 2017; pp. 5374–5377. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A Split-Based Approach to Unsupervised Change Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage Assessment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1658–1670. [Google Scholar] [CrossRef]
- Fujimura, T.; Ono, K.; Nagata, H.; Omuro, N.; Kimura, T.; Murata, M. New small airborne SAR based on PI-SAR2. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, VIC, Australia, 21–26 July 2015; pp. 798–801. [Google Scholar] [CrossRef]
- Bai, Y.; Hu, J.; Su, J.; Liu, X.; Liu, H.; He, X.; Meng, S.; Mas, E.; Koshimura, S. Pyramid Pooling Module-Based Semi-Siamese Network: A Benchmark Model for Assessing Building Damage from xBD Satellite Imagery Datasets. Remote Sens. 2020, 12, 4055. [Google Scholar] [CrossRef]
- Kalinicheva, E.; Sublime, J.; Trocan, M. Change Detection in Satellite Images Using Reconstruction Errors of Joint Autoencoders. In Proceedings of the Artificial Neural Networks and Machine Learning—ICANN 2019: Image Processing—28th International Conference on Artificial Neural Networks, Munich, Germany, 17–19 September 2019; Proceedings, Part III, Lecture Notes in Computer Science. Tetko, I.V., Kurková, V., Karpov, P., Theis, F.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11729, pp. 637–648. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Bengio, Y.; Courville, A.C. Deep Learning; Adaptive Computation and Machine Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Learning to Compare Image Patches via Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015 (CVPR 2015), Boston, MA, USA, 7–12 June 2015. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S. Digital Image Enhancement and Noise Filtering by Use of Local Statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 165–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Yamazaki, F.; Murao, O. Vulnerability Functions for Japanese Buildings based on Damage Data from the 1995 Kobe Earthquake. In Implications of Recent Earthquakes on Seismic Risk; World Scientific: Singapore, 2000; pp. 91–102. [Google Scholar] [CrossRef]
- Gokon, H.; Koshimura, S.; Imai, K.; Matsuoka, M.; Namegaya, Y.; Nishimura, Y. Developing fragility functions for the areas affected by the 2009 Samoa earthquake and tsunami. Nat. Hazards Earth Syst. Sci. Discuss. 2014, 2, 1–25. [Google Scholar] [CrossRef]
- Koshimura, S.; Oie, T.; Yanagisawa, H.; Imamura, F. Developing Fragility Functions for Tsunami Damage Estimation Using Numerical Model and Post-Tsunami Data from Banda Aceh, Indonesia. Coast. Eng. J. 2009, 51, 243–273. [Google Scholar] [CrossRef] [Green Version]
- Suppasri, A.; Mas, E.; Charvet, I.; Gunasekera, R.; Imai, K.; Fukutani, Y.; Abe, Y.; Imamura, F. Building Damage Characteristics Based on Surveyed Data and Fragility Curves of the 2011 Great East Japan Tsunami. Nat. Hazards 2013, 66, 319–341. [Google Scholar] [CrossRef] [Green Version]
- About the Results of the Survey on the Current Situation of the Damage Caused by the Great East Japan Earthquake (1st report). Available online: https://www.mlit.go.jp/report/press/city07_hh_000053.html (accessed on 1 January 2021).
- Mas, E.; Koshimura, S.; Suppasri, A.; Matsuoka, M.; Matsuyama, M.; Yoshii, T.; Jimenez, C.; Yamazaki, F.; Imamura, F. Developing Tsunami fragility curves using remote sensing and survey data of the 2010 Chilean Tsunami in Dichato. Nat. Hazards Earth Syst. Sci. 2012, 12, 2689–2697. [Google Scholar] [CrossRef] [Green Version]
- Suppasri, A.; Koshimura, S.; Imamura, F. Developing tsunami fragility curves based on the satellite remote sensing and the numerical modeling of the 2004 Indian Ocean tsunami in Thailand. Nat. Hazards Earth Syst. Sci. 2011, 11, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Murao, O.; Nakazato, H. Vulnerability functions for buildings based on damage survey data in Sri Lanka after the 2004 Indian Ocean Tsunami. In Proceedings of the International Conference on Sustainable Built Environment (ICSBE-2010), Kandy, Sri Lanka, 13–14 December 2010; pp. 371–378. [Google Scholar]
- Reese, S.; Bradley, B.A.; Bind, J.; Smart, G.; Power, W.; Sturman, J. Empirical building fragilities from observed damage in the 2009 South Pacific tsunami. Earth-Sci. Rev. 2011, 107, 156–173. [Google Scholar] [CrossRef]
- MacQueen, J.B. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June 1967; pp. 281–297. [Google Scholar]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 1977, 39, 1–38. [Google Scholar]
- Besag, J. On the Statistical Analysis of Dirty Pictures. J. R. Stat. Soc. Ser. B Methodol. 1986, 48, 259–302. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Iandola, F.N.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Wide Residual Networks. arXiv 2016, arXiv:1605.07146. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- About the Summary of the Tsunami-Affected Urban Area Reconstruction: Method Study Survey from the Great East Japan Earthquake. Available online: https://www.mlit.go.jp/toshi/toshi-hukkou-arkaibu.html (accessed on 1 January 2021).
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, Lake Tahoe, NV, USA, 3–6 December 2012; Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; 2012; pp. 1106–1114. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015—18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III, Lecture Notes in Computer Science. Navab, N., Hornegger, J., III, Wells, M.W., Frangi, A.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Seide, F.; Agarwal, A. CNTK: Microsoft’s Open-Source Deep-Learning Toolkit. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Association for Computing Machinery: New York, NY, USA, 2016; p. 2135. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015; Bach, F.R., Blei, D.M., Eds.; 2015; Volume 37, pp. 448–456. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Conference Track Proceedings. Bengio, Y., LeCun, Y., Eds.; 2015. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Liu, X.; Zhu, E.; Yin, J. Deep Clustering with Convolutional Autoencoders. In Proceedings, Part II. Lecture Notes in Computer Science; Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10635, pp. 373–382. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; Fürnkranz, J., Joachims, T., Eds.; 2010; pp. 807–814. [Google Scholar]
- Xu, Y.; Xiang, S.; Huo, C.; Pan, C. Change detection based on auto-encoder model for VHR images. In Proceedings of the MIPPR 2013: Pattern Recognition and Computer Vision, Wuhan, China, 26–27 October 2013; Cao, Z., Ed.; International Society for Optics and Photonics, SPIE: Washington, DC, USA, 2013; Volume 8919, pp. 1–7. [Google Scholar] [CrossRef]
- Lee, W.Y.; Park, S.M.; Sim, K.B. Optimal hyperparameter tuning of convolutional neural networks based on the parameter-setting-free harmony search algorithm. Optik 2018, 172, 359–367. [Google Scholar] [CrossRef]
- Moya, L.; Muhari, A.; Adriano, B.; Koshimura, S.; Mas, E.; Marval-Perez, L.R.; Yokoya, N. Detecting urban changes using phase correlation and l1-based sparse model for early disaster response: A case study of the 2018 Sulawesi Indonesia earthquake-tsunami. Remote Sens. Environ. 2020, 242, 111743. [Google Scholar] [CrossRef]
- Adriano, B.; Yokoya, N.; Xia, J.; Baier, G.; Koshimura, S. Cross-Domain-Classification of Tsunami Damage Via Data Simulation and Residual-Network-Derived Features From Multi-Source Images. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4947–4950. [Google Scholar] [CrossRef]
- Adriano, B.; Xia, J.; Baier, G.; Yokoya, N.; Koshimura, S. Multi-Source Data Fusion Based on Ensemble Learning for Rapid Building Damage Mapping during the 2018 Sulawesi Earthquake and Tsunami in Palu, Indonesia. Remote Sens. 2019, 11, 886. [Google Scholar] [CrossRef] [Green Version]
- Syifa, M.; Kadavi, P.R.; Lee, C.W. An Artificial Intelligence Application for Post-Earthquake Damage Mapping in Palu, Central Sulawesi, Indonesia. Sensors 2019, 19, 542. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, QC, Canada, 8–13 December 2014; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; 2014; pp. 2672–2680. [Google Scholar]
- Sønderby, C.K.; Caballero, J.; Theis, L.; Shi, W.; Huszár, F. Amortised MAP Inference for Image Super-resolution. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017. [Google Scholar]
- Xia, X.; Kulis, B. W-Net: A Deep Model for Fully Unsupervised Image Segmentation. arXiv 2017, arXiv:1711.08506. [Google Scholar]
- Hou, B.; Liu, Q.; Wang, H.; Wang, Y. From W-Net to CDGAN: Bitemporal Change Detection via Deep Learning Techniques. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1790–1802. [Google Scholar] [CrossRef] [Green Version]
Mission | Active Years | Spatial Resolution | Sensors | Studies |
---|---|---|---|---|
Infoterra GmbH/TerraSAR-X | 2010–now | 0.5–40 m | SAR | [7,8,9,10,11,12,13,14,15] |
DigitalGlobe/Worldview-2 | 2009–now | 2 m | PAN | [16,17] |
ASI COSMO-SkyMed | 2007–now | 1–30 m | SAR | [18,19] |
JAXA ALOS/AVNIR-2 | 2006–2011 | 10 m | VNIR | [20,21] |
JAXA ALOS/PALSAR | 2006–2011 | 7–89 m | PoLSAR | [9,13,22,23,24,25] |
ESA/ENVISAT | 2002–2012 | 260–300 m | VNIR | [26] |
28–30 m | ASAR | |||
NASA/ASTER | 1999–now | 15 m | VNIR | [26,27] |
90 m | TIR | [26] | ||
NICT/Pi-SAR2 (airborne) | 2011–now | 0.3–1 m | SAR | [22] |
Other aircrafts & drones | - | - | LiDAR | [28,29] |
- | - | RGB | [7,20,21,28,29,30,31] |
Before & After Approaches | Analysis on the Aftermath Image(s) | |
---|---|---|
AI based on supervised learning | [8,9,10,15,16] | [12,24,25] |
AI based on unsupervised learning | [14,23,26] | |
Supervised Deep Learning | [17,31,44] | [11,31] |
Unsupervised Deep Learning | [27] |
Input | Method | Supervision | Classes | Metric | Scores | Ref. | Year |
---|---|---|---|---|---|---|---|
VNIR+TIR | KMeans | No | NC, SED, Wa, (+4) | - | - | [26] | 2013 |
PolSAR | EM+MRF | No | 1 | OA | 0.90 | [23] | 2013 |
SAR | Decision Trees | Yes | WA, C, SLD | OA | 0.59–0.67 | [8] | 2015 |
Kappa | 0.38–0.47 | [8] | 2015 | ||||
SAR | SVM | Yes | Change or not | F1 | 0.85 | [9] | 2016 |
RGB | AlexNet+VGG | Yes | WA, C, NC | OA | 0.93–0.96 | [31] | 2017 |
SAR | Regression+IHF | Semi | C, NC | F1 | 0.80–0.85 | [14] | 2018 |
OA | 0.79–0.84 | [14] | 2018 | ||||
SAR | SVM | Yes | WA, MOD, SLD | F1 | 0.71–0.84 | [10] | 2018 |
PolSAR | SVM | Yes | SED, MOD, SLD, I | OA | 0.89–0.95 2 | [24,25] | 2018 |
VNIR | UNet | Yes | WA, C, NC | OA | 0.71 | [17] | 2018 |
F1 | 0.35–0.76 | [17] | 2018 | ||||
VNIR | DR-UNet [74] | Yes | WA, C, NC | OA | 0.55 | [17] | 2018 |
F1 | 0.24–0.58 | [17] | 2018 | ||||
SAR | SqueezeNet+WRN | Yes | WA, C, SLD | OA | 0.71 | [11] | 2018 |
SAR | SVM | Yes | NC, I, C | F1 | 0.80–0.91 | [12] | 2019 |
VNIR | AE+DEC | No | C, NC, Wa | OA | 0.83–0.90 | [27] | 2019 |
Kappa | 0.52–0.80 | [27] | 2019 | ||||
VNIR | AE+KMeans | No | C, NC, Wa | OA | 0.86–0.91 | [27] | 2019 |
Kappa | 0.42–0.81 | [27] | 2019 | ||||
VNIR | SVM | Yes | La, Fo, Wa 3 | FPR | 0.59–0.83 | [16] | 2020 |
FNR | 0.19–0.89 | [16] | 2020 | ||||
RGB | SSNet+PPM | Yes | WA, SED, SLD, I | OA | 0.69 4 | [44] | 2020 |
SAR | SVM + IHF | Semi | C, NC | OA | 0.85 | [15] | 2021 |
F1 | 0.86 | [15] | 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sublime, J. The 2011 Tohoku Tsunami from the Sky: A Review on the Evolution of Artificial Intelligence Methods for Damage Assessment. Geosciences 2021, 11, 133. https://doi.org/10.3390/geosciences11030133
Sublime J. The 2011 Tohoku Tsunami from the Sky: A Review on the Evolution of Artificial Intelligence Methods for Damage Assessment. Geosciences. 2021; 11(3):133. https://doi.org/10.3390/geosciences11030133
Chicago/Turabian StyleSublime, Jérémie. 2021. "The 2011 Tohoku Tsunami from the Sky: A Review on the Evolution of Artificial Intelligence Methods for Damage Assessment" Geosciences 11, no. 3: 133. https://doi.org/10.3390/geosciences11030133
APA StyleSublime, J. (2021). The 2011 Tohoku Tsunami from the Sky: A Review on the Evolution of Artificial Intelligence Methods for Damage Assessment. Geosciences, 11(3), 133. https://doi.org/10.3390/geosciences11030133