Clinopyroxene Crystals in Basic Lavas of the Marsili Volcano Chronicle Early Magmatic Stages in a Back-Arc Transcrustal Mush System
Abstract
:1. Introduction
2. Background
3. Materials and Methods
4. Results
4.1. Chemical Variability of MV Clinopyroxene
4.1.1. Crystallization in the Mush
4.1.2. Magma Mixing Processes
4.2. Pressures and Temperatures of Crystallization
5. Discussion
5.1. Crystallization Stages Governing Basalt-Andesite Evolution
5.2. Basic Magma Migration Pathways
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, A.; Bachmann, O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet. Sci. Lett. 2014, 393, 266–274. [Google Scholar] [CrossRef]
- Martinez, F.; Taylor, B. Modes of crustal accretion in back-arc basins: Inferences from the Lau Basin. In Back-Arc Spreading Systems: Geological, Biological, Chemical and Physical Interactions, Geophysical Monograph; Christie, D.M., Fisher, C.R., Lee, S.-M., Givens, S., Eds.; American Geophysical Union: Washington, DC, USA, 2006; Volume 166, pp. 5–30. [Google Scholar] [CrossRef]
- Turner, S.J.; Langmuir, C.H. The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes. Earth Planet. Sci. Lett. 2015, 422, 182–193. [Google Scholar] [CrossRef]
- Cashman, K.V.; Sparks, R.S.J.; Blundy, J.D. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science 2017, 355, EAAG 3055. [Google Scholar] [CrossRef]
- Rudnick, R. Making continental crust. Nature 1995, 378, 571–578. [Google Scholar] [CrossRef]
- Grove, T.L.; Elkins-Tanton, L.T.; Parman, S.W.; Chatterjee, N.; Müntener, O.; Gaetani, G.A. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib. Mineral. Petrol. 2003, 145, 515–533. [Google Scholar] [CrossRef]
- Melekhova, E.; Annen, C.; Blundy, J. Compositional gaps in igneous rock suites controlled by magma system heat and water content. Nat. Geosci. 2013, 6, 385–390. [Google Scholar] [CrossRef]
- Melekhova, E.; Jon Blundy, J.; Robertson, R.; Humphreys, M.C.S. Experimental evidence for polybaric differentiation of primitive arc basalt beneath St. Vincent, Lesser Antilles. J. Petrol. 2015, 56, 161–192. [Google Scholar] [CrossRef]
- Nandedkar, H.R.; Ulmer, P.; Müntener, O. Fractional crystallization of primitive, hydrous arc magmas: An experimental study at 0.7 GPa. Contrib. Mineral. Petrol. 2014, 167, 1015. [Google Scholar] [CrossRef]
- Pichavant, M.; Macdonald, R. Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: Experimental evidence from St Vincent, Lesser Antilles arc. Contrib. Mineral. Petrol. 2007, 154, 535–558. [Google Scholar] [CrossRef]
- Dahren, B.; Troll, R.V.; Andersson, B.U. Magma plumbing beneath Anak Krakatau volcano, Indonesia: Evidence for multiple magma storage regions. Contrib. Mineral. Petrol. 2012, 163, 631–651. [Google Scholar] [CrossRef]
- Geiger, H.; Troll, R.V.; Jolis, M.E.; Deegan, M.F.; Harris, C.; Hilton, R.D.; Freda, C. Multi-level magma plumbing at Agung and Batur volcanoes increases risk of hazardous eruptions. Sci. Rep. 2018, 8, 10547. [Google Scholar] [CrossRef]
- Jeffery, A.J.; Gertisser, R.; Troll, V.R.; Jolis, E.M.; Dahren, B.; Harris, C.; Tindle, A.G.; Preece, K.; O’Driscoll, B.; Humaida, H.; et al. The pre-eruptive magma plumbing system of the 2007–2008 dome-forming eruption of Kelut volcano, East Java, Indonesia. Contrib. Mineral. Petrol. 2013, 166, 275–308. [Google Scholar] [CrossRef]
- Kent, A.; Darr, C.; Koleszar, A.; Salisbury, J.M.; Cooper, M.K. Preferential eruption of andesitic magmas through recharge filtering. Nat. Geosci. 2010, 3, 631–636. [Google Scholar] [CrossRef]
- Ruprecht, P.; Plank, T. Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 2013, 500, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Cashman, V.K.; Edmonds, M. Mafic glass compositions: A record of magma storage conditions, mixing and ascent. Phil. Trans. R. Soc. A 2019, 377, 20180004. [Google Scholar] [CrossRef] [PubMed]
- Trua, T.; Marani, P.M.; Gamberi, F. Magmatic evidence for African mantle propagation into the southern Tyrrhenian back-arc region. In Volcanism and Evolution of the African Lithosphere Special Paper; Beccaluva, L., Bianchini, G., Wilson, M., Eds.; Geological Society of America: Boulder, CO, USA, 2011; Volume 478, pp. 307–331. [Google Scholar] [CrossRef]
- Trua, T.; Marani, M.P.; Gamberi, F. Magma plumbing system at a young back-arc spreading center: The Marsili Volcano, Southern Tyrrhenian Sea. Geochem. Geophys. Geosyst. 2018, 19, 43–59. [Google Scholar] [CrossRef]
- Di Stefano, F.; Mollo, S.; Ubide, T.; Petrone, C.M.; Caulfield, J.; Scarlato, P.; Nazzari, M.; Andronico, D.; Del Bello, E. Mush cannibalism and disruption recorded by clinopyroxene phenocrysts at Stromboli volcano: New insights from recent 2003–2017 activity. Lithos 2020, 360–361, 105440. [Google Scholar] [CrossRef]
- Maro, G.; Caffe, P.J.; Romer, R.L.; Trumbull, R.B. Neogene mafic magmatism in the northern Puna Plateau, Argentina: Generation and evolution of a back-arc volcanic suite. J. Petrol. 2017, 58, 1591–1617. [Google Scholar] [CrossRef]
- Preece, K.; Gertisser, R.; Barclay, J.; Berlo, K.; Herd, R.A. Pre- and syn-eruptive degassing and crystallisation processes of the 2010 and 2006 eruptions of Merapi volcano, Indonesia. Contrib. Mineral. Petrol. 2014, 168, 1061. [Google Scholar] [CrossRef]
- Trua, T.; Marani, M.P.; Barca, D. Lower crustal differentiation processes beneath a back-arc spreading ridge (Marsili seamount, Southern Tyrrhenian Sea). Lithos 2014, 190–191, 349–362. [Google Scholar] [CrossRef]
- Jackson, M.D.; Blundy, J.; Sparks, R.S.J. Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust. Nature 2018, 564, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Marani, M.P.; Trua, T. Thermal constriction and slab tearing at the origin of a superinflated spreading ridge: Marsili volcano (Tyrrhenian Sea). J. Geophys. Res. 2002, 107, 2188. [Google Scholar] [CrossRef]
- Faccenna, C.; Becker, T.W.; Auer, L.; Billi, A.; Boschi, L.; Brun, J.P.; Capitanio, F.A.; Funiciello, F.; Horvàth, F.; Jolivet, L.; et al. Mantle dynamics in the Mediterranean. Rev. Geophys. 2014, 52, 283–332. [Google Scholar] [CrossRef]
- Kastens, K.A.; Mascle, J. The geological evolution of the Tyrrhenian Sea: An introduction to the scientific results of ODP Leg 107. Proc. Ocean Drill. Program Sci. Results 1990, 107, 3–26. [Google Scholar]
- Tumanian, M.; Frezzotti, M.L.; Peccerillo, A.; Brandmayr, E.; Panza, G.F. Thermal structure of the shallow upper mantle beneath Italy and neighbouring areas: Magmatic activity and geodynamic significance. Earth-Sci. Rev. 2012, 114, 369–385. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Min. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Mollo, S.; Del Gaudio, P.; Ventura, G.; Iezzi, G.; Scarlato, P. Dependence of clinopyroxene composition on cooling rate in basaltic magmas: Implications for thermobarometry. Lithos 2010, 118, 302–312. [Google Scholar] [CrossRef]
- Ghiorso, M.S.; Sack, R.O. Chemical mass-transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures. Contrib. Miner. Petrol. 1995, 119, 197–212. [Google Scholar] [CrossRef]
- Costa, F.; Morgan, D. Time constraints from chemical equilibration in magmatic crystals. In Timescales of Magmatic Processes: From Core to Atmosphere; Dosseto, A., Turner, S., Van-Orman, J., Eds.; Wiley: Chichester, UK, 2011; pp. 125–159. [Google Scholar] [CrossRef]
- Stamper, C.C.; Blundy, J.D.; Arculus, R.J.; Melekhova, E. Petrology of plutonic xenoliths and volcanic rocks from Grenada, Lesser Antilles. J. Petrol. 2014, 55, 1353–1387. [Google Scholar] [CrossRef]
- Langmuir, C.H.; Klein, E.M.; Plank, T. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In Mantle Flow and Melt Generation at Mid-Ocean Ridges; Morgan, J.P., Blackman, D.K., Sinton, J.M., Eds.; Geophysical Monograph, American Geophysical Union: Washington, DC, USA, 1992; Volume 71, pp. 183–280. [Google Scholar] [CrossRef]
- Muntener, O.; Kelemen, P.B.; Grove, T.L. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study. Contrib. Mineral. Petrol. 2001, 141, 643–658. [Google Scholar] [CrossRef]
- Bouilhol, P.; Schmidt, M.W.; Burg, J.P. Magma transfer and evolution in channels within the arc crust: The pyroxenitic feeder pipes of Sapat (Kohistan, Pakistan). J. Petrol. 2015, 56, 1309–1342. [Google Scholar] [CrossRef]
- Nakagawa, M.; Wada, K.; Wood, C.P. Mixed magmas, mush chambers and eruption triggers: Evidence from zoned clinopyroxene phenocrysts in andesitic scoria from the 1995 eruptions of Ruapehu volcano, New Zealand. J. Petrol. 2002, 43, 2279–2303. [Google Scholar] [CrossRef]
- Petrone, C.M.; Braschi, E.; Francalanci, L.; Casalini, M.; Tommasini, S. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano. Earth Planet. Sci. Lett. 2018, 492, 206–221. [Google Scholar] [CrossRef]
- Stone, S.; Niu, Y. Origin of compositional trends in clinopyroxene of oceanic gabbros and gabbroic rocks: A case study using data from ODP Hole 735B. J. Volcanol. Geoth. Res. 2009, 184, 313–322. [Google Scholar] [CrossRef]
- Ubide, T.; Kamber, B.S. Volcanic crystals as time capsules of eruption history. Nat. Commun. 2018, 9, 326. [Google Scholar] [CrossRef]
- Cooper, G.F.; Davidson, J.P.; Blundy, J.D. Plutonic xenoliths from Martinique, Lesser Antilles: Evidence for open system processes and reactive melt flow in island arc crust. Contrib. Mineral. Petrol. 2016, 171, 87. [Google Scholar] [CrossRef] [PubMed]
- Larocque, J.; Canil, D. The role of amphibole in the evolution of arc magmas and crust: The case from the Jurassic Bonanza arc section, Vancouver Island, Canada. Contrib. Mineral. Petrol. 2010, 159, 475–492. [Google Scholar] [CrossRef]
- Neave, D.A.; Putirka, K.D. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. Am. Mineral. 2017, 102, 777–794. [Google Scholar] [CrossRef]
- Smith, D.J. Clinopyroxene precursors to amphibole sponge in arc crust. Nat. Commun. 2014, 5, 4329. [Google Scholar] [CrossRef]
- Couch, S.; Sparks, R.S.; Carroll, M.R. Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 2001, 411, 1037–1039. [Google Scholar] [CrossRef]
- Dufek, J.; Bachmann, O. Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics. Geology 2011, 38, 687–690. [Google Scholar] [CrossRef]
- Crabtree, S.M.; Lange, R.A. Complex phenocryst textures and zoning patterns in andesites and dacites: Evidence of degassing-induced rapid crystallization? J. Petrol. 2011, 52, 3–38. [Google Scholar] [CrossRef]
- Streck, M.J. Mineral textures and zoning as evidence for open system processes. Rev. Mineral. Geochem. 2008, 69, 595–622. [Google Scholar] [CrossRef]
Pre-Eruptive Conditions | |||||||
---|---|---|---|---|---|---|---|
Rock Type Sample | Location | Phenocrysts | T (°C) | P (kbar) | Depth (km) below Seafloor (bsf) | Water Depth (km) | Depth (km) below Sealevel (bsl) |
Basalts: | |||||||
MRS2 | northern portion | Ol(12%), Pl(5%), Cpx(2%) | 1168–1170 | 0.3–0.4 | 1.1–1.4 | 2.5 | 3.6–3.9 |
D5 | central rift zone | Cpx(20%), Pl(10%), Ol(2%) | - | - | - | - | - |
D6 | southern rift zone | Pl(7%), Ol(2%), Cpx(1%) | 1143 | 1.5 | 5.3 | 2.6 | 7.9 |
D16 | south-eastern flank | Pl(8%), Cpx(4%), Ol(2%) | 1133–1138 | 0.5–0.6 | 1.8–2.1 | 2.5 | 4.3–4.6 |
Basaltic-andesites: | |||||||
D1 | central rift zone | Pl(8%), Cpx(5%), Ol(1%) | 1167–1170 | 2.5–3.0 | 8.8–10.5 | 0.8 | 9.6–11.3 |
D2 | southern rift zone | Pl(8%), Cpx(2%), Ol(1%) | 1142–1148 | 2.5–3.0 | 8.8–10.5 | 0.9 | 9.7–11.4 |
D4 | southern rift zone | Cpx(8%), Pl(6%), Ol(2%) | 1166–1169 | 2.5–3.1 | 8.8–10.6 | 1.0 | 9.8–11.5 |
D11 | south-eastern flank | Pl(7%), Cpx(3%), Ol(2%) | 1139 | 0.8 | 2.8 | 2.3 | 5.1 |
D19 | south-eastern flank | Pl(10%), Cpx(4%), Ol(2%) | 1132–1133 | 0.4–0.6 | 1.4–2.1 | 2.5 | 3.9–4.6 |
Andesites: | |||||||
MRS9 | summit cone | Pl(6%), Cpx(3%) | - | - | - | - | - |
MRS10 | summit cone | Pl(8%), Cpx(2%), Opx(1%) | - | - | - | - | - |
D14 | summit cone | Pl(8%), Cpx(2%), Opx(1%) | 1141–1145 | 0.8–1.0 | 2.8–3.5 | 0.7 | 3.5–4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trua, T.; Marani, M.P. Clinopyroxene Crystals in Basic Lavas of the Marsili Volcano Chronicle Early Magmatic Stages in a Back-Arc Transcrustal Mush System. Geosciences 2021, 11, 159. https://doi.org/10.3390/geosciences11040159
Trua T, Marani MP. Clinopyroxene Crystals in Basic Lavas of the Marsili Volcano Chronicle Early Magmatic Stages in a Back-Arc Transcrustal Mush System. Geosciences. 2021; 11(4):159. https://doi.org/10.3390/geosciences11040159
Chicago/Turabian StyleTrua, Teresa, and Michael P. Marani. 2021. "Clinopyroxene Crystals in Basic Lavas of the Marsili Volcano Chronicle Early Magmatic Stages in a Back-Arc Transcrustal Mush System" Geosciences 11, no. 4: 159. https://doi.org/10.3390/geosciences11040159
APA StyleTrua, T., & Marani, M. P. (2021). Clinopyroxene Crystals in Basic Lavas of the Marsili Volcano Chronicle Early Magmatic Stages in a Back-Arc Transcrustal Mush System. Geosciences, 11(4), 159. https://doi.org/10.3390/geosciences11040159