Hydroacoustic Observations of Two Contrasted Seismic Swarms along the Southwest Indian Ridge in 2018
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Seismicity of Swarm-1
3.2. Seismicity of Swarm-2
4. Discussion
4.1. Seismic Activity Rate
4.2. Temporal and Geographical Distribution of Events
4.3. Source Level of Earthquake Events
4.4. Magmatic Nature of the Swarms
5. Conclusions
- Swarm-1 lasted for 13 days and counted 1109 events and occurred at a long-lived ridge segment of the SWIR, whereas swarm-2 lasted for 33 days, counted 4880 events, and occurred at a younger ridge segment that resulted from the eastward propagation of the SWIR.
- The detection of events over two iterations reduced the uncertainties in location (latitude and longitude) and origin time by ∼10-fold in swarm-1 and ∼11-fold in swarm-2. For both swarms, they were better than 1 km in latitude and longitude and 0.5 s in origin time.
- In both swarms, we detected series of short duration (<10 s) impulsive events. Most of them focused on the slope of a local bathymetric high. We interpreted them as thermal explosions resulting from direct magma supply on the seafloor. The origin of dike intrusions may be located at their apex.
- Several observations, common to both swarms, pointed to a magmatic origin. The large events, detected on land (ISC; Mw > 5), and all hydroacoustic events occurred in an area bounded by or in the vicinity of bathymetric highs. Both showed an initial propagation, followed by spatio-temporal clusters and widespread stress readjustments. Finally, the absence of clear tectonic mainshock–aftershock sequences and a high seismicity rate are common signatures of a magmatic episode, and they lasted nearly two weeks in Segment 18 (swarm-1) and a month in Segment 4 (swarm-2).
- The abundance of weak (SL < 200 dB) and strong (SL > 230 dB) events in Segment 4 (locus of swarm-2) suggests that this end of the SWIR is more prone to small-scale readjustments to stress perturbations, here, dike intrusions, and to tectonic fracturing than long-lived, fracture zone bounded sections of the SWIR, such as Segment 18. The difference in the geometrical spread of small events, greater in swarm-2 than in swarm-1, is probably indicative of different lithospheric strengths.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Utsu, T. Aftershocks and earthquake statistics (2): Further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences. J. Fac. Sci. Hokkaido Univ. Ser. 7 Geophys. 1971, 3, 197–266. [Google Scholar]
- Passarelli, L.; Heryandoko, N.; Cesca, S.; Rivalta, E.; Rohadi, S.; Dahm, T.; Milkereit, C. Magmatic or not magmatic? The 2015–2016 seismic swarm at the long-dormant Jailolo volcano, West Halmahera, Indonesia. Front. Earth Sci. 2018, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Sykes, L.R. Earthquake swarms and sea-floor spreading. J. Geophys. Res. 1970, 75, 6598–6611. [Google Scholar] [CrossRef]
- Bergman, E.A.; Solomon, S.C. Earthquake swarms on the Mid-Atlantic Ridge: Products of magmatism or extensional tectonics? J. Geophys. Res. 1990, 95, 4943–4965. [Google Scholar] [CrossRef]
- Tolstoy, M.; Bohnenstiehl, D.R.; Edwards, M.H.; Kurras, G.J. Seismic character of volcanic activity at the ultraslow-spreading Gakkel Ridge. Geology 2001, 29, 1139–1142. [Google Scholar] [CrossRef]
- Schlindwein, V.; Demuth, A.; Korger, E.; Läderach, C.; Schmid, F. Seismicity of the Arctic mid-ocean ridge system. Polar Sci. 2015, 9, 146–157. [Google Scholar] [CrossRef]
- Schmid, F.; Schlindwein, V.; Koulakov, I.; Plötz, A.; Scholz, J.R. Magma plumbing system and seismicity of an active mid-ocean ridge volcano. Sci. Rep. 2017, 7, 42949. [Google Scholar] [CrossRef] [Green Version]
- Giusti, M.; Perrot, J.; Dziak, R.P.; Sukhovich, A.; Maia, M. The August 2010 earthquake swarm at North FAMOUS–FAMOUS segments, Mid-Atlantic Ridge: Geophysical evidence of dike intrusion. Geophys. J. Int. 2018, 215, 181–195. [Google Scholar] [CrossRef]
- Sykes, L.R. Mechanism of earthquakes and nature of faulting on the mid-oceanic ridges. J. Geophys. Res. 1967, 72, 2131–2153. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.G.; Matsumoto, H.; Lau, T.K.A. Monitoring Pacific Ocean seismicity from an autonomous hydrophone array. J. Geophys. Res. 2001, 106, 4183–4206. [Google Scholar] [CrossRef]
- Korger, E.I.M.; Schlindwein, V. Performance of localization algorithms for teleseismic mid-ocean ridge earthquakes: The 1999 Gakkel Ridge earthquake swarm and its geological interpretation. Geophys. J. Int. 2012, 188, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Toomey, D.R.; Solomon, S.C.; Purdy, G.M.; Murray, M.H. Microearthquakes beneath the median valley of the Mid-Atlantic Ridge near 23° N: Hypocenters and focal mechanisms. J. Geophys. Res. 1985, 90, 5443–5458. [Google Scholar] [CrossRef]
- Wolfe, C.J.; Purdy, G.M.; Toomey, D.R.; Solomon, S.C. Microearthquake characteristics and crustal velocity structure at 29° N on the Mid-Atlantic Ridge: The architecture of a slow spreading segment. J. Geophys. Res. 1995, 100, 24449–24472. [Google Scholar] [CrossRef]
- Tolstoy, M.; Waldhauser, F.; Bohnenstiehl, D.R.; Weekly, R.T.; Kim, W.-Y. Seismic identification of along-axis hydrothermal flow on the East Pacific Rise. Nature 2008, 451, 181–184. [Google Scholar] [CrossRef]
- Fox, C.G.; Radford, W.E.; Dziak, R.P.; Lau, T.K.; Matsumoto, H.; Schreiner, A.E. Acoustic detection of a seafloor spreading episode on the Juan de Fuca Ridge using military hydrophone arrays. Geophys. Res. Lett. 1995, 22, 131–134. [Google Scholar] [CrossRef]
- Smith, D.K.; Escartin, J.; Cannat, M.; Tolstoy, M.; Fox, C.G.; Bohnenstiehl, D.R.; Bazin, S. Spatial and temporal distribution of seismicity along the northern Mid-Atlantic Ridge (15°–35° N). J. Geophys. Res. 2003, 108, 2167. [Google Scholar] [CrossRef]
- Royer, J.Y.; Chateau, R.; Dziak, R.P.; Bohnenstiehl, D.R. Seafloor seismicity, Antarctic ice-sounds, cetacean vocalizations and long-term ambient sound in the Indian Ocean basin. Geophys. J. Int. 2015, 202, 748–762. [Google Scholar] [CrossRef] [Green Version]
- Rundquist, D.V.; Sobolev, P.O. Seismicity of mid-oceanic ridges and its geodynamic implications: A review. Earth Sci. Rev. 2002, 58, 143–161. [Google Scholar] [CrossRef]
- Bohnenstiehl, D.R.; Waldhauser, F.; Tolstoy, M. Frequency-magnitude distribution of microearthquakes beneath the 9°50′ N region of the East Pacific Rise, October 2003 through April 2004. Geochem. Geophys. Geosyst. 2008, 9, Q10T03. [Google Scholar] [CrossRef] [Green Version]
- Dziak, R.P.; Bohnenstiehl, D.R.; Smith, D.K. Hydroacoustic monitoring of oceanic spreading centers: Past, present, and future. Oceanography 2012, 25, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Tolstoy, I.; Ewing, M. The T phase of shallow-focus earthquakes. Bull. Seism. Soc. Am. 1950, 40, 25–51. [Google Scholar] [CrossRef]
- Weston, D.E.; Rowlands, P.B. Guided acoustic waves in the ocean. Rep. Prog. Phys. 1979, 42, 347. [Google Scholar] [CrossRef]
- Fox, C.; Squire, V.A. On the oblique reflexion and transmission of ocean waves at shore fast sea ice. Phil. Trans. R. Soc. Lond. A 1994, 347, 185–218. [Google Scholar] [CrossRef]
- Royer, J.Y.; Patriat, P.; Bergh, H.W.; Scotese, C.R. Evolution of the Southwest Indian Ridge from the Late Cretaceous (anomaly 34) to the Middle Eocene (anomaly 20). Tectonophysics 1988, 155, 235–260. [Google Scholar] [CrossRef]
- Royer, J.Y.; Sclater, J.G.; Sandwell, D.T. A preliminary tectonic fabric chart of the Indian Ocean. Proc. Indian Acad. Sci. Earth Planet. Sci. 1989, 98, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Sauter, D.; Cannat, M. The ultraslow spreading Southwest Indian ridge. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges; Geophysical Monograph Series; The American Geophysical Union: Washington, DC, USA, 2010; Volume 188, pp. 153–173. [Google Scholar] [CrossRef] [Green Version]
- Patriat, P.; Ségoufin, J. Reconstruction of the central Indian Ocean. Tectonophysics 1988, 155, 211–234. [Google Scholar] [CrossRef]
- Patriat, P.; Sauter, D.; Munschy, M.; Parson, L.M. A survey of the Southwest Indian Ridge axis between Atlantis II Fracture Zone and the Indian Triple Junction: Regional setting and large scale segmentation. Mar. Geophys. Res. 1997, 19, 457–480. [Google Scholar] [CrossRef]
- Chu, D.; Gordon, G.R. Evidence for motion between Nubia and Somalia along the Southwest Indian Ridge. Nature 1999, 398, 64–67. [Google Scholar] [CrossRef]
- Cannat, M.; Sauter, D.; Bezos, A.; Meyzen, C.; Humler, E.; Le Rigoleur, M. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem. Geophys. Geosyst. 2008, 9, Q04002. [Google Scholar] [CrossRef]
- Mendel, V.; Sauter, D.; Parson, L.; Vanney, J.R. Segmentation and morphotectonic variations along a super slow-spreading center: The Southwest Indian Ridge (57°–70° E). Mar. Geophys. Res. 1997, 19, 505–533. [Google Scholar] [CrossRef]
- Mendel, V.; Sauter, D.; Rommevaux-Jestin, C.; Patriat, P.; Lefebvre, F.; Parson, L.M. Magmato-tectonic cyclicity at the ultra-slow spreading Southwest Indian Ridge: Evidence from variations of axial volcanic ridge morphology and abyssal hills pattern. Geochem. Geophys. Geosyst. 2003, 4, 9102. [Google Scholar] [CrossRef]
- Dick, H.J.; Lin, J.; Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 2003, 426, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Sandwell, D.T.; Smith, W.H. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res. 1997, 102, 10039–10054. [Google Scholar] [CrossRef] [Green Version]
- Cannat, M.; Rommevaux-Jestin, C.; Sauter, D.; Deplus, C.; Mendel, V. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69° E). J. Geophys. Res. 1999, 104, 22825–22843. [Google Scholar] [CrossRef]
- Wiens, D.A.; Petroy, D.E. The largest recorded earthquake swarm: Intraplate faulting near the Southwest Indian Ridge. J. Geophys. Res. 1990, 95, 4735–4750. [Google Scholar] [CrossRef]
- Krishna, M.R.; Arora, S.K. Space-time seismicity and earthquake swarms: Certain observations along the slow-spreading mid-Indian Ocean ridges. Proc. Indian Acad. Sci. Earth Planet. Sci. 1998, 107, 161–173. [Google Scholar] [CrossRef]
- Tsang-Hin-Sun, E.; Royer, J.Y.; Perrot, J. Seismicity and active accretion processes at the ultraslow-spreading Southwest and intermediate-spreading Southeast Indian ridges from hydroacoustic data. Geophys. J. Int. 2016, 206, 1232–1245. [Google Scholar] [CrossRef]
- Royer, J.Y.; Beauverger, M.; Torterotot, M.; Lecoulant, J. Seismic Crises along the Southwest Indian Ridge: Insights from Hydroacoustic Observations. 2019. Available online: https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/544476 (accessed on 20 May 2021).
- Schlindwein, V.; Schmid, F. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature 2016, 535, 276–279. [Google Scholar] [CrossRef]
- Yu, Z.; Li, J.; Niu, X.; Rawlinson, N.; Ruan, A.; Wang, W.; Hu, H.; Wei, X.; Zhang, J.; Liang, Y. Lithospheric structure and tectonic processes constrained by microearthquake activity at the central ultraslow-spreading Southwest Indian Ridge (49.2° to 50.8° E). J. Geophys. Res. 2018, 123, 6247–6262. [Google Scholar] [CrossRef] [Green Version]
- Schlindwein, V. Teleseismic earthquake swarms at ultraslow spreading ridges: Indicator for dyke intrusions? Geophys. J. Int. 2012, 190, 442–456. [Google Scholar] [CrossRef] [Green Version]
- Läderach, C.; Korger, E.I.M.; Schlindwein, V.; Müller, C.; Eskstaller, A. Characteristics of tectonomagmatic earthquake swarms at the Southwest Indian Ridge between 16° E and 25° E. Geophys. J. Int. 2012, 190, 429–441. [Google Scholar] [CrossRef]
- Meier, M.; Schlindwein, V. First in situ seismic record of spreading events at the ultraslow spreading Southwest Indian Ridge. Geophys. Res. Lett. 2018, 45, 10–360. [Google Scholar] [CrossRef]
- ISC International Seismological Center. On-Line Bulletin 2021. Available online: http://www.isc.ac.uk/iscbulletin/search/catalogue/ (accessed on 10 November 2020).
- Ekström, G.; Nettles, M.; Dziewonski, A.M. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 2012, 200–201, 1–9. [Google Scholar] [CrossRef]
- Royer, J.Y. OHA-SIS-BIO: Hydroacoustic Observatory of the Seismicity and Biodiversity in the Indian Ocean. 2009. Available online: https://campagnes.flotteoceanographique.fr (accessed on 21 May 2021).
- Samaran, F.; Stafford, K.M.; Branch, T.A.; Gedamke, J.; Royer, J.-Y.; Dziak, R.P.; Guinet, C. Seasonal and geographic variation of southern blue whale subspecies in the Indian Ocean. PLoS ONE 2013, 8, e71561. [Google Scholar] [CrossRef]
- Fox, C.G.; Dziak, R.P.; Matsumoto, H.; Schreiner, A.E. Potential for monitoring low-level seismicity on the Juan-de-Fuca ridge using military hydrophone arrays. Mar. Technol. Soc. J. 1993, 27, 22–30. [Google Scholar]
- Dziak, R.P.; Smith, D.K.; Bohnenstiehl, D.R.; Fox, C.G.; Desbruyeres, D.; Matsumoto, H.; Tolstoy, M.; Fornari, D.J. Evidence of a recent magma dike intrusion at the slow spreading Lucky Strike segment, Mid-Atlantic Ridge. J. Geophys. Res. 2004, 109, B12102. [Google Scholar] [CrossRef] [Green Version]
- Bohnenstiehl, D.R.; Tolstoy, M. Comparison of teleseismically and hydroacoustically derived earthquake locations along the north-central Mid-Atlantic Ridge and Equatorial East Pacific Rise. Seism. Res. Lett. 2003, 74, 791–802. [Google Scholar] [CrossRef]
- Bohnenstiehl, D.R.; Tolstoy, M.; Smith, D.K.; Fox, C.G.; Dziak, R.P. Time-clustering behavior of spreading-center seismicitybetween 15 and 35 N on the Mid-Atlantic Ridge: Observations from hydroacoustic monitoring. Phys. Earth Planet. Int. 2003, 138, 147–161. [Google Scholar] [CrossRef]
- Schreiner, A.E.; Fox, C.G.; Dziak, R.P. Spectra and magnitudes of T-waves from the 1993 earthquake swarm on the Juan de Fuca Ridge. Geophys. Res. Lett. 1995, 22, 139–142. [Google Scholar] [CrossRef]
- Slack, P.D.; Fox, C.G.; Dziak, R.P. P wave detection thresholds, Pn velocity estimates, and T wave location uncertainty from oceanic hydrophones. J. Geophys. Res. 1999, 104, 13061–13072. [Google Scholar] [CrossRef]
- Teague, W.J.; Carron, M.J.; Hogan, P.J. A comparison between the Generalized Digital Environmental Model and Levitus climatologies. J. Geophys. Res. 1990, 95, 7167–7183. [Google Scholar] [CrossRef]
- Lecoulant, J.; Guennou, C.; Guillon, L.; Royer, J.-Y. 3D-modeling of earthquake generated acoustic waves in the ocean in simplified configurations. J. Acoust. Soc. Am. 2019, 146, 2110–2120. [Google Scholar] [CrossRef]
- Bohnenstiehl, D.R.; Tolstoy, M.; Dziak, R.P.; Fox, C.G.; Smith, G. Aftershock sequences in the mid-ocean ridge environment: An analysis using hydroacoustic data. Tectonophysics 2002, 354, 49–70. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Seismicity of the Earth and Associated Phenomena; Princeton University Press: Princeton, NJ, USA, 1954. [Google Scholar]
- Aki, K. Maximum likelihood estimate of b in the formula log N = a−b M and its confidence limits. Bull. Earthq. Res. Inst. Tokyo Univ. 1965, 43, 237–239. [Google Scholar]
- Chadwick, W.W.; Paduan, J.B.; Clague, D.A.; Dreyer, B.M.; Merle, S.G.; Bobbitt, A.M.; Caress, D.W.; Philip, B.T.; Kelley, D.S.; Nooner, S.L. Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount. Geophys. Res. Lett. 2016, 43, 12063–12070. [Google Scholar] [CrossRef]
- Wilcock, W.S.; Tolstoy, M.; Garcia, C.; Tan, Y.J.; Waldhauser, F. Live from the Seafloor: Seismic Signals Associated with the 2015 Eruption of Axial Seamount. 2015. Available online: https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/73407 (accessed on 20 May 2021).
- Wilcock, W.S.; Tolstoy, M.; Waldhauser, F.; Garcia, C.; Tan, Y.J.; Bohnenstiehl, D.R.; Caplan-Auerbach, J.; Dziak, R.P.; Arnuif, A.F.; Mann, M.E. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption. Science 2016, 354, 1395–1399. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.J.; Tolstoy, M.; Waldhauser, F.; Wilcock, W.S. Dynamics of a seafloor-spreading episode at the East Pacific Rise. Nature 2016, 540, 261–265. [Google Scholar] [CrossRef]
- Utsu, T.; Ogata, Y.; Matsuura, R.S. The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 1995, 43, 1–33. [Google Scholar] [CrossRef]
- Parsons, B.; Sclater, J.G. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 1977, 82, 803–827. [Google Scholar] [CrossRef]
- Debayle, E.; Lévêque, J.-J. Upper mantle heterogeneities in the Indian Ocean from waveform inversion. Geophys. Res. Lett. 1997, 24, 245–248. [Google Scholar] [CrossRef]
- Sohn, R.A.; Hildebrand, J.A.; Webb, S.C. Postrifting seismicity and a model for the 1993 diking event on the CoAxial segment, Juan de Fuca Ridge. J. Geophys. Res. 1998, 103, 9867–9877. [Google Scholar] [CrossRef]
- Rivalta, E.; Taisne, B.; Bunger, A.P.; Katz, R.F. A review of mechanical models of dike propagation: Schools of thought, results and future directions. Tectonophysics 2015, 638, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Michael, P.J.; Langmuir, C.H.; Dick, H.J.B.; Snow, J.E.; Goldstein, S.L.; Graham, D.W.; Lehnert, K.; Kurras, G.; Jokat, W.; Mühe, R.; et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 2003, 423, 956–961. [Google Scholar] [CrossRef]
- McNutt, S.R. Seismic monitoring and eruption forecasting of volcanoes: A review of the state-of-the-art and case histories. In Monitoring and Mitigation of Volcano Hazards; Springer: Berlin/Heidelberg, Germany, 1996; pp. 99–146. [Google Scholar] [CrossRef]
- Simao, N.; Escartin, J.; Goslin, J.; Haxel, J.; Cannat, M.; Dziak, R. Regional seismicity of the Mid-Atlantic Ridge: Observations from autonomous hydrophone arrays. Geophys. J. Int. 2010, 183, 1559–1578. [Google Scholar] [CrossRef] [Green Version]
- Cannat, M.; Rommevaux-Jestin, C.; Fujimoto, H. Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69° E). Geochem. Geophys. Geosyst. 2003, 4, 9104. [Google Scholar] [CrossRef]
- Standish, J.J.; Sims, K.W. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge. Nat. Geosci. 2010, 3, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Mogi, K. Earthquakes and fractures. Tectonophysics 1967, 5, 35–55. [Google Scholar] [CrossRef]
- Hainzl, S. Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering. Geophys. J. Int. 2004, 159, 1090–1096. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H. New, improved version of Generic Mapping Tools released. Eos Trans. Am. Geophys. Union 1998, 79, 579. [Google Scholar] [CrossRef]
Sites | RTJ | NE-AMS | S-SEIR | SW-AMS | ELAN | WKER | S-SWIR | MAD-W | MAD-E |
---|---|---|---|---|---|---|---|---|---|
Latitude (°S) | 24.379 | 31.576 | 33.518 | 42.951 | 56.460 | 46.602 | 38.547 | 29.047 | 24.205 |
Longitude (°E) | 72.372 | 83.242 | 70.866 | 74.598 | 62.976 | 60.548 | 52.929 | 54.258 | 63.010 |
Depth (m) | 1109 | 1060 | 1280 | 1100 | 1020 | 960 | 1230 | 1288 | 1238 |
Sampling rate (Hz) | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 |
Sensitivity (dB) | −163.9 | −163.5 | −163.7 | −163.4 | −163.8 | −163.3 | −164.2 | −163.4 | −163.5 |
Start time | 11 February 2018 | 5 February 2018 | 8 February 2018 | 31 January 2018 | 16 January 2018 | 19 January 2018 | 9 January 2018 | 6 January 2018 | 13 February 2018 |
End time | 10 February 2019 | 30 January 2019 | 23 December 2018 | 30 January 2019 | 23 January 2019 | 29 July 2018 | 14 January 2019 | 3 November 2018 | 21 July 2018 |
Clock drift (ppm) | 0.0300 | −0.2426 | −0.2861 | 0.0048 | −0.0222 | −0.0348 | 0.0346 | −0.0010 | −0.7870 |
Key Points | Swarm 1 | Swarm 2 |
---|---|---|
Date span in 2018 | 6 July to 18 July | 25 September to 27 October |
Duration in days | 13 | 33 |
Number of ISC catalogue events | 231 | 92 |
Number of hydroacoustic events | 1109 | 4880 |
Average number of events per hour (over whole duration) | 4 | 8 |
Number of impulsive events | 69 | 58 |
Number of AuH stations used | 9 | 7 |
Most events located with | 6 stations (40%) | 5 stations (62%) |
Median error in latitude (km) | 0.44 | 0.33 |
Median error in longitude (km) | 0.35 | 0.26 |
Median error in origin time (s) | 0.19 | 0.18 |
Range of source level (dB) | 201.23–236.08 | 196.08–240.33 |
Number of events with SL > 230 dB | 10 | 24 |
Number of events with SL < 200 dB | 0 | 142 |
SL of completeness of OHA catalogue | 212 dB | 209 dB |
SL of completeness of ISC catalogue (Figure 4) | 218 dB | 223 dB |
Magnitude completeness of ISC catalogue (mb) | 3.9 | 3.9 |
Magnitude completeness of OHA catalogue (mb, Figure 4) | 3.4 | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ingale, V.V.; Bazin, S.; Royer, J.-Y. Hydroacoustic Observations of Two Contrasted Seismic Swarms along the Southwest Indian Ridge in 2018. Geosciences 2021, 11, 225. https://doi.org/10.3390/geosciences11060225
Ingale VV, Bazin S, Royer J-Y. Hydroacoustic Observations of Two Contrasted Seismic Swarms along the Southwest Indian Ridge in 2018. Geosciences. 2021; 11(6):225. https://doi.org/10.3390/geosciences11060225
Chicago/Turabian StyleIngale, Vaibhav Vijay, Sara Bazin, and Jean-Yves Royer. 2021. "Hydroacoustic Observations of Two Contrasted Seismic Swarms along the Southwest Indian Ridge in 2018" Geosciences 11, no. 6: 225. https://doi.org/10.3390/geosciences11060225
APA StyleIngale, V. V., Bazin, S., & Royer, J. -Y. (2021). Hydroacoustic Observations of Two Contrasted Seismic Swarms along the Southwest Indian Ridge in 2018. Geosciences, 11(6), 225. https://doi.org/10.3390/geosciences11060225